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ABSTRACT

Heterocarpy is often associated with different flower morphs. However, in Calendula micrantha,
a monoecious member of the Asteraceae, all six fruit morphs arise only from ray flowers. The
maternal investment differs markedly among the fruit morphs, as does the growth, size and
competitive ability of the resulting seedlings. The fruit morphs appear to be adapted to different
conditions, as there were profound differences among the progeny of different morphs raised at
different densities and in different watering treatments.
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INTRODUCTION

Heterocarpy, the production of multiple fruit morphs by a single plant, is common among
the Asteraceae (Koller and Roth, 1964; Flint and Palmblad, 1978; McEvoy, 1984; Venable,
1985; Venable and Levin, 1985; Tanowitz et al., 1987; Venable et al., 1987, 1998; De Clavijo,
1994). Heterocarpy is often associated with flower polymorphisms and influences both
seed dispersal and seed germination (Silvertown, 1984; Maun and Payne, 1989; De Clavijo,
1994). Locally dispersed seeds usually exhibit delayed germination, while seeds dispersed
over greater distances often lack dormancy (Venable, 1985; Venable and Levin, 1985;
Venable et al., 1987; De Clavijo, 1994). Within the Asteraceae, disc achenes are usually
lighter and exhibit higher and faster germination rates (Tanowitz et al., 1987).

Fruit polymorphisms are believed to evolve in response to environments that are spatially
and temporally heterogeneous. A critical feature of that heterogeneity is population density
(Geritz, 1995). As seed size is positively associated with the resulting adult plant size,
competitive ability and the type of fruit the seed came from, individuals from heterocarpous
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species can alter the competitive profile of their offspring by altering the proportions of
fruit types. Mechanistically, such alterations are apt to reflect both developmental time and
nutritional status. Early developing seeds tend to have the greatest seed dormancy, whereas
later developing seeds have the least (Silvertown, 1984). Within the Asteraceae, the ray
flowers, which develop first, often have thicker pericarps and greater seed dormancy
(McEvoy, 1984; Tanowitz et al., 1987; Venable et al., 1987). Plants in nutrient-rich areas are
expected to have the greatest variation in fruit types, while those in nutrient-poor areas
should have the least (De Clavijo, 1994; Geritz, 1995). Seeds which are dispersed in
aggregate, or very locally, should also show the minimum variation in size, whereas those
dispersed more broadly should be more variable (Geritz, 1995).

Although most heterocarpous species display two fruit types with two or three types of
seeds (see Silvertown, 1984; De Clavijo, 1994), the genus Calendula is renowned for the wide
diversity of fruit types produced by a single individual. Heyn and Joel (1983) document
more than seven types of fruit produced by individuals of C. arvensis and C. triptercarpa,
with even more types produced by their hybrids. Calendula is also unusual because the
multiple fruit types all originate from ray flowers, and the larger fruits are less dense than
the smaller fruits. Thus, small fruits (with smaller embryos) tend to drop under the parent,
whereas larger fruits (with larger embryos) are dispersed more broadly (A. El-Keblawy,
unpublished data).

Here, we examine the competitive ability and response to stress of individuals from
different fruit morphs of Calendula micrantha. C. micrantha displays a wide variety of fruit
types (Fig. 1), with many ornamented to favour animal or wind dispersal (morphs I, II
and III), whereas others show no such ornamentation, and thus the morphs differ in dis-
persability. Like other heterocarpous species, C. micrantha (Philipupillai and Ungar, 1984;
De Clavijo, 1994) is a desert annual.

We examined the proportion of fruit morphs produced by plants derived from different
fruit morphs and reared in different irrigation treatments and at different densities. We
also examined the masses of the pericarp and seed, seed germination, the number of
leaves and the length of the longest leaf in each treatment. Finally, because C. micrantha
is monoecious, producing both male and female flowers, we also report on the floral
sex ratio.

Fig. 1. The six fruit morphs of Calendula micrantha. The fruits are arranged in ascending order from
left to right (i.e. I–VI).
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METHODS

Calendula micrantha is a desert annual primarily found inhabiting sandy soils in the Sinai
desert. Fruits were collected in February 1995 near El-Arish, Egypt. To characterize the
fruit morphs, we determined the total fruit, pericarp and embryo mass (± 0.001 mg) by
weighing each separately. Total fruit weight is equal to the sum of the seed and pericarp
weights. We also conducted germination studies using all six morphs. Plants in the first
treatment were germinated at room temperature, whereas those in the second treatment
were kept at room temperature for 12 h and then at 4�C for the remainder of the day. We
refer to the latter as the ‘cold treatment’. We used six replicates of 25–30 fruits for morphs
II, III, IV and VI, and 45 fruits for morph I. Morph V is rarer than the other morphs and
we only used 10 fruits per replicate of this morph. The number of germinated seeds was
recorded daily and final germination percentages were compared among the morphs.
The number of leaves, length of the longest leaf, root and stem were all measured (± 1 mm)
25 days post-emergence.

In a separate experiment, we assessed the response of individuals from fruit morphs
I, II and III (Fig. 1) to different levels of density, irrigation and both intramorph and
intermorph competition. Seeds were germinated on filter paper in petri dishes moistened
with tap water in May 1997 in the greenhouse at Wayne State University, Detroit, MI.
Seedlings were then transplanted into a sand :potting soil mix (9 :1) in plastic pots
(circumference of 48.7 cm and depth of 15 cm).

For the density study, seeds of morphs I, II and III were sown singly as a control (0.53
plant ·dm−2), two plants per pot (1.07 plants ·dm−2), five plants per pot (2.65 plants ·dm−2)
and six plants per pot (3.18 plants ·dm−2). Competition among morphs was examined using
the following designs: morph II and morph I plants (5MII/1MI, 1MII/1MI), morph III
and morph I plants (1MIII/1MI, 5MIII/1MI, 5MI/1MIII) and morph III and morph II
plants (1MIII/1MII, 5MIII/1MII, 1MIII/5MII).

All pots were randomly numbered and assigned to a watering treatment – that is, wet,
medium or dry. Dry pots were watered every third day, medium pots every second day and
wet pots every day. At each watering, plants received 150 ml of tap water. Plants were grown
from May to August 1997. There were five replicates per treatment.

From 16 June until 30 July 1997, the number of inflorescences was counted and the
number of male and female flowers determined. The various fruit morphs were harvested
and counted as they developed. At week 7, the experiment was terminated. The plants were
then harvested and dried at 80�C for 2 weeks. After drying, the total weight of individual
plants and the total weight of inflorescences were determined.

Data analyses

Diversity of fruit morphs produced by each plant was computed using the information
index (H�; Ludwig and Reynolds, 1988). All data were analysed using SPSS. Means were
compared using an analysis of variance (ANOVA) and post-hoc Student Newman-Keuls
multiple range tests. Categorical data were analysed using a chi-square analysis. The lengths
of the roots and stems, number of leaves, length of the longest leaf and seedling mass were
all log-transformed to meet the assumptions of ANOVA. We present the untransformed
data, but the statistics are from the transformed data.



Gardocki et al.704

RESULTS

Germination

We assessed germination of all six fruit morphs at room temperature (Table 1). The per-
centage of seeds that germinated was dependent upon fruit morph. Seeds from morph I
had significantly lower germination (standardized residual = 5.10, P < 0.01) and seeds
from morphs III and IV had significantly higher germination (standardized residuals =
3.3 and 2.1 respectively) than one would expect by chance. The results of the cold germi-
nation trials at 4�C did not differ from those at room temperature for all morphs combined
(χ2 = 0.04, P > 0.8) or for any fruit morph (Table 1).

Fruit, embryo and pericarp weights

Total embryo weight, fruit and pericarp weights differed significantly among the morphs
(F5,89 = 9.74, P < 0.001; F5,107 = 49.59, P < 0.001; F5,89 = 37.59, P < 0.001, respectively)
(Fig. 2). Fruits from morphs I and II were significantly smaller than those from morphs
V and VI, which, in turn, were significantly smaller than fruits from morphs III and IV.
Pericarps from morphs I and II weighed less than those from morphs V and VI, which

Fig. 2. The mean and 95% confidence intervals for (a) total fruit mass (�) and embryo mass (—),
(b) pericarp mass and (c) seedling mass of the various morphs.
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weighed less than those of morph III. Pericarps from morph IV weighed significantly less
than those from morphs III–VI, while the embryos from morph III weighed significantly
more than those of morph VI. There was no significant difference among the embryo
weights of morphs III and V.

Fruit morph and seedling sizes

In the germination experiments, the lengths of the root and stems and the seedling weight
all differed significantly among the six fruit morphs (F5,130 = 6.00, P < 0.001; F5,116 = 3.34,
P < 0.007; F5,130 = 34.74, P < 0.001, respectively). Seedlings from morph VI had significantly
longer roots than did those of the other morphs; however, there was no difference among
the other morphs (Table 2). Morph VI also had longer stems and roots than morph I.
The post-hoc analyses divided the seedlings into four weight groups in ascending order
of weight: morph I; morph II; morphs V, VI and IV; morphs VI, IV and III (Fig. 2). This
pattern is similar to that observed for embryo mass, except that morphs VI, IV and III differ
from morph V in seedling mass, but not embryo mass.

Number of leaves

The watering treatment, density and size of fruit all significantly affected the number of
leaves. The number of leaves per plant increased significantly as the amount of water
increased during watering (Table 3; F2,393 = 24.94, P < 0.001). Plants in the dry treatment
produced significantly fewer leaves than those in the other two watering treatments. The
number of leaves per plant varied with density in the following order: 2 plants/pot > 6
plants/pot > 5 plants/pot > 1 plant/pot (Table 4; F2,393 = 3.30, P < 0.03). Plants in the two-
plants-per-pot treatment produced significantly more leaves than plants in the one- and six-
plants-per-pot treatments, but not more than the five-plants-per-pot-treatment, which did
not differ significantly from the other treatments. The number of leaves differed among the
three fruit size categories and increased with increasing fruit size (F2,393 = 13.35, P < 0.001).
The density × fruit size interaction was also significant for the number of leaves (Table 5;
F6,393 = 7.01, P < 0.001). Plants from the largest fruits had more leaves per plant in
all treatments. However, the number of leaves per plant was less for plants from morph II
fruits at low density than for plants from morph I fruits. At high density, this pattern was
reversed.

Length of longest leaf

The length of the longest leaf also varied with the watering treatment, density and size
of fruit. The length of the longest leaf increased in response to an increase in watering
treatment (Table 3; F2,773 = 35.62, P < 0.001) and fruit size (F2,773 = 31.231, P < 0.001, data
not shown). The length of the longest leaf varied with density in the following order:
2 plants/pot > 5 plants/pot > 1 plant/pot > 6 plants/pot (Table 4; F3,773 = 19.672, P < 0.001).
The watering treatment × density and the density × size interactions were both significant
at P < 0.001 (F6,773 = 2.37 and F6,773 = 13.95, respectively). All density treatments (1–6
plants/pot) demonstrated an increase in the length of the longest leaf corresponding to the
watering treatment (F4,393 = 2.21, P < 0.05). Plants from the highest density treatment
(6 plants/pot) did not exhibit as much of a difference between the dry and wet treatments
as the less dense treatments (F4,393 = 13.62, P < 0.001).
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Adult plant size

Plant mass varied significantly among the density treatments (Tables 5 and 6), watering
treatments and fruit size. Plants from the lower density treatments (1 and 2 plants/pot)
exhibited a greater dry weight than those from the higher density treatments (5 and 6 plants/
pot) (F3,640 = 27.1, P < 0.001). Plant dry weight decreased significantly as the frequency of
watering decreased (F2,640 = 170.0, P < 0.001).

Plants from morph I fruits were significantly smaller than those from morph II and
morph III fruits when watering frequency was decreased (F2,640 = 5.2, P < 0.001). The den-
sity × seed size (Table 5; F6,640 = 3.4, P < 0.003), density × watering treatment (F6,640 = 10.7,
P < 0.001, data not shown) and seed size × watering treatment (Table 6; F4,640 = 2.6,
P < 0.03) interactions were all significant, as was the three-way interaction (F12,640 = 3.3,
P < 0.001). Plants in the highest two density treatments differed significantly from those in
the one- and two-plants-per-pot treatments. Plants from morph I fruit were smaller than
those from morph II and morph III fruits, although a post-hoc test did not indicate that they
were significantly smaller, even though the ANOVA indicated a significant seed size effect.
Plant mass increased significantly with increasing water.

Frequency of flowering

The proportion of plants that flowered differed significantly among the watering treatments
(χ2 = 99.9, P < 0.001) (Table 7). Plants in the wet treatment were significantly more likely to
flower than plants in the medium and dry treatments. This was true even when the data were
analysed separately for each class of fruits (χ2 = 31.7, χ2 = 32.7 and χ2 = 25.9 for morphs I, II
and III fruits respectively; all P < 0.001). The proportion of plants that flowered was greater
than expected at the lowest density and less than expected at the highest density; however,
this difference was not quite significant (Table 7; χ2 = 6.38, P < 0.094). When the data were
analysed separately by fruit morph, density was found to have a significant effect on the
likelihood of plants from morph II fruits flowering (χ2 = 8.3, P < 0.05). Plants in the lowest
density treatment were significantly more likely to flower. This one treatment contributed
80% of the chi-square value. The same trend was observed in the morph I seed, although
it was not significant. Nevertheless, two-thirds of plants from morph I fruits at the lowest

Table 6. The effects of water treatment and seed size on aspects of plant development and plant
reproduction (means with standard deviations in parentheses)

Morph I Morph II Morph III F6,640

Plant mass
Wet
Intermediate
Dry

0.264 (0.240)
0.079 (0.076)
0.028 (0.021)

0.269 (0.242)
0.110 (0.104)
0.037 (0.066)

0.298 (0.269)
0.092 (0.080)
0.057 (0.092)

2.6*

Inflorescences per plant
Wet
Intermediate
Dry

4.914 (5.273)
1.492 (2.037)
0.429 (1.021)

3.325 (4.200)
2.650 (3.420)
0.400 (0.969)

3.465 (3.747)
1.635 (1.931)
0.439 (0.850)

..

*P < 0.05.
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density flowered, whereas only 45% of those in the highest density treatment flowered.
Whether or not a plant flowered was independent of the size of fruit a plant came from
(χ2 = 0.52, ..).

Number of inflorescences

The number of inflorescences differed among the density treatments (Table 4; F3,640 = 10.5,
P < 0.001), fruit size or morph classes (Table 8; F2,640 = 2.9, P = 0.058) and water treatments
(Table 3; F2,640 = 62.8, P < 0.001). There were significant density × water treatment (F6,640 =
4.5, P < 0.001) and water treatment × fruit size (F4,640 = 2.6, P < 0.037) interactions (Tables
5 and 6). The density × fruit size class interaction and the three-way interaction were not
significant. Plants in the one- and two-plants-per-pot treatments produced significantly
more inflorescences than plants in the six-plants-per-pot treatment. There were no differ-
ences between the number of inflorescences produced by the five- and six-plants-per-pot
treatments, or the two- and five-plants-per-pot treatments. Inflorescence number increased
with increasing fruit size and increasing amounts of water.

Mass of combined inflorescences

The mass of combined inflorescences varied significantly for the watering treatments
(F2,254 = 22.8, P < 0.001) and density treatments (F3,254 = 5.4, P < 0.001), but not fruit size

Table 7. The influence of watering frequency and density on flowering, and the proportion of plants
that fruited (expected values are shown in parentheses)

Flowers No flowers Fruit No fruit

Watering frequency
Wet
Intermediate
Dry

156 (117.3)
144 (123.1)
54 (113.6)

68 (106.7)
91 (111.9)

163 (103.4)

33 (43.1)
70 (45.2)
27 (41.7)

191 (180.9)
165 (189.8)
190 (175.3)

χ2 = 99.99, P < 0.001 χ2 = 26.2, P < 0.001

Density
1 plant/pot
2 plants/pot
5 plants/pot
6 plants/pot

29 (23.0)
47 (44.0)
91 (85.9)

187 (201.1)

15 (21.0)
37 (40.0)
73 (78.1)

197 (182.9)

12 (8.5)
7 (16.2)

46 (31.5)
65 (73.80)

32 (35.5)
77 (67.8)

118 (132.5)
319 (310.2)

χ2 = 6.38, P < 0.094 χ2 = 17.8, P < 0.001

Table 8. The effect of seed size on plant reproduction (means with standard deviations in
parentheses)

Morph I Morph II Morph III d.f. F

Inflorescences per plant 2.373 (3.878) 2.200 (3.451) 1.779 (2.704) 2,640 2.9

P = 0.058.
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(F2,254 = 0.6, ..) (Tables 3 and 4). Only the density × watering treatment interaction (Table
5) was significant (F6,254 = 2.9, P < 0.01). Plants in the two-plants-per-pot treatment pro-
duced a greater biomass of inflorescences than in the other treatments; no other differences
were significant. The total biomass of inflorescences increased significantly with increasing
water, being highest in the wet treatment.

Mass of individual inflorescences

The mass of individual inflorescences varied only among the watering treatments (F2,254 =
3.9, P < 0.001). Plants in the dry treatment produced significantly lighter inflorescences than
the other two treatments, while those in the intermediate watering treatment produced
lighter inflorescences than plants in the wet treatment.

Numbers of flowers

Date. The total number of flowers differed significantly among the six dates (F5,1039 = 7.97,
P < 0.001) (Fig. 3). Similarly, the number of female and male flowers also differed among
the dates (F5,1039 = 2.25, P < 0.048; F5,1039 = 11.64, P < 0.001, respectively) (Fig. 3). The ratio

Fig. 3. The numbers of female (�), male ( ) and total (�) flowers (a) and the floral sex ratio (b) as
a function of time. Note the increase in the floral sex ratio with time.
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of male to female flowers also differed among the dates (F5,1039 = 10.49, P < 0.001). In
general, the number of flowers and the proportion of male flowers increased throughout
the season.

Density. Fewer female flowers were produced at higher densities (F3,1039 = 3.43, P < 0.05)
(Table 4). The same trend was seen with male flowers, although the data were not significant
(F3,1039 = 1.82, P < 0.05). The sex ratio and the total number of flowers did not differ among
the density treatments.

Fruit size. The size of the fruit did not influence the number of flowers produced, either in
total or for either sex, nor did it influence the floral sex ratio.

Watering treatment. The watering treatment significantly influenced the total number of
flowers (Table 3) (F2,1039 = 12.85, P < 0.001), the number of female flowers (F2,1039 = 6.72,
P < 0.001) and the number of male flowers (F2,1039 = 14.96). The floral sex ratio decreased
significantly as the frequency of watering increased (F2,1039 = 19.34, P < 0.001).

The frequency of fruiting

Whether or not a plant produced fruit depended on the density of plants in the pots
(χ2 = 17.78, P < 0.001) (Table 7), the watering treatment (χ2 = 26.2, P < 0.001) (Table 7)
and the size of fruit the plant came from (χ2 = 33.4, P < 0.001). Plants from the morph III
fruit size category produced fruits significantly more often than plants from other two
size categories. Only 15.4% of plants from morph I fruits produced fruits, while 20.8% of
morph II fruits produced fruits and 63.8% of plants from morph III fruits produced fruits.
Plants from the one- and five-plants-per-pot treatments were significantly more likely to
produce fruits than plants in the two- and six-plants-per-pot treatments. Surprisingly, plants
in the five-plants-per-pot treatment are largely responsible for the significance of this result.
Most of these plants that produced fruits were from morph III fruits (29 of the 46 plants
that fruited were from morph III fruits, only 3 were from morph I fruits). Plants in the
intermediate water treatment produced fruit significantly more often than plants in the
other two watering treatments. Of the 61 plants that produced fruit in this treatment,
46 were from morph III fruits.

Number of fruit produced

The number of fruits produced was independent of density (F3,111 = 2.60, P > 0.10), watering
treatment (F2,111 = 0.29, P > 0.75) and the size of the parental fruit (F2,111 = 2.12, P > 0.10).

Proportions of fruit types

The proportions of fruit types depended upon density (χ2 = 73.32, P < 0.0001) (Table 9).
For example, 21.9% and 31.3% of the fruits produced by plants in the one- and two-plants-
per-pot treatments respectively were morph II fruits, while only 11.4% and 13.9% respec-
tively of the fruits produced in the five- and six-plants-per-pot treatments were morph II
fruits. In contrast, the proportion of other fruit types was fairly uniform among the density
treatments. Roughly one-third of the fruits produced by plants in each treatment were
morph I fruits (a low of 30% in the two-plants-per-pot treatment and a high of 34.4% in
the five-plants-per-pot treatment).
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The type of fruit produced also depended on the watering treatment (χ2 = 30.61,
P < 0.0023) (Table 9). Only 3.3% of the fruits produced by plants in the dry treatment were
morph I fruits, whereas 20.8% of the fruits produced by plants in the intermediate watering
treatment were morph I fruits. In contrast, morph VI fruits were produced in about the
same proportions (9.4%, 7.9% and 6.1%) by plants in the wet, intermediate and dry treat-
ments. Finally, the types of fruit produced by a plant depended upon the type of fruit that
the plant came from (χ2 = 65.18, P < 0.001) (Table 9). For example, only 13.4% of the fruits
produced by plants from morph I fruits were of morph IV, while 23.4% of fruits produced
by morph III fruits were of morph IV.

Diversity of fruit types produced

The diversity of fruit types was independent of fruit size, watering treatments and density.

DISCUSSION

Evolutionarily we might expect that the different fruit morphs produce offspring that have
different life-history properties because they are adapted to different environments (see
Venable, 1985; Venable and Levin, 1985; Venable et al., 1987, 1998; Venable and Burquez,
1989). We found that maternal investment in pericarp and embryo mass differed among the
fruit morphs. Morph I fruits had significantly thinner pericarps and smaller embryos,
although the differences in embryo weights were less than those of fruit weights (embryo
weight varied by two-fold, whereas fruit weight varied by three-fold). Germination rate was
highest for those morphs where the maternal parent had made the greatest investment (i.e.
the large fruits had not only more massive pericarps but also larger embryos). Fruit morph
profoundly impacted several early life-history features: seed germination, root and stem
length and leaf number.

Fruit morph also influenced many later life-history parameters, including plant size, the
number of inflorescences, the mass of the inflorescences, the frequency of fruiting and the
proportion of fruit morphs produced. However, fruit morph did not influence the number
of flowers or the floral sex ratio. In general, resource-intensive parameters (producing
inflorescences or fruits) were enhanced by increasing fruit size, while parameters related to
male fitness (the production of male flowers, floral sex ratio, frequency of flowering) were
independent of fruit size.

To ascertain if the different morphs are adapted to different environments, we computed
two composite fitness measures for the different morphs in each environment. The first is
based upon the number of inflorescences (and thus flowers) and the second is based upon
fruits. The first gives a measure of male reproduction and the second examines more directly
female reproduction. In the first (Fig. 4) we computed the product of (1) the probability
of a seed germinating, (2) the probability of survival, (3) the probability of flowering and
(4) the number of inflorescences. For the second measure (Fig. 5) we multiplied the first
composite measure by the average number of fruits per inflorescence. We then normalized
the data to the most fit fruit morph.

In terms of inflorescences (flowers), plants from morph I fruits had their highest fitness at
low density in the dry treatment (Fig. 4). In that environment, they were more fit than any
of the other morphs; however, as density or water increased, the relative fitness of plants
from morph I fruits declined. Plants from morph II fruits had higher fitness than morph III
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in the dry treatment at a density of one plant per pot. However, as density increased, their
fitness also declined. Plants from morph II fruits had their highest relative fitness at the
five-plants-per-pot treatment in both the wet and intermediate watering treatments. In the
intermediate water treatment, these plants were the most fit morph at a density of five
plants per pot. Plants from morph III fruits were most fit at the two- and five-plants-
per-pot densities in the dry treatment and were overwhelmingly more fit at higher densities
in the wet treatment.

In terms of fruit production, plants from morph I fruits were overwhelmingly the most
fit fruit morph in the dry treatment at a density of one plant per pot (Fig. 5). At higher
densities, plants from the morph III fruits were considerably more fit in all watering treat-
ments. Morph II only produced appreciable numbers of fruits at a density of five plants
per pot in the intermediate watering environment. Thus, the different fruit morphs do
appear to be adapted to different conditions. How this adaptive phenotypic plasticity
evolved is not clear, but that it did evolve suggests that there are fine-scale persistent habitat
differences in the Egyptian deserts.

In testing the various hypotheses proposed to explain heterocarpy, it is important that
we have significant treatment effects. For example, plants in the wet and lowest density

Fig. 4. Fitness based upon flower production should give an indication of reproductive potential
via pollen. We computed this estimate as the product of the probability of a seed germinating, the
probability of survival to flowering, the probability of flowering and the number of inflorescences.
Here we show this measure differed among fruit morph, density and watering treatments.
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treatments are expected to have the highest amount of resources and, according to theory,
to produce the greatest diversity of fruit type. Thus, it is important to establish that our
treatments influenced the plants. Our watering treatments significantly influenced plant size,
the frequency of flowering, the number and mass of inflorescences, the frequency of fruiting
and the proportion of fruit types. Similarly, our density treatments significantly impacted
plant size, mass of inflorescences, the number of flowers, the frequency of fruiting and the
proportion of fruit types. Thus, the plants were responsive to the gradients we imposed.
Given this, we can now examine the specific predictions made regarding heterocarpy.

The hypotheses regarding fruit size are contrary to those regarding dispersal mechanisms
(Venable, 1985; Venable and Levin, 1985; Venable et al., 1987; De Clavijo, 1994). Locally
dispersed fruits should have the greatest dormancy; that is, in our case, the small non-
ornamented fruits are expected to show the greatest dormancy. We clearly found seeds from
these fruits to have the lowest germination rate, even when vernalized. On the other hand,
dispersed fruits (i.e. our ornamented fruits) should not display dormancy; these fruits clearly
had the highest germination rates. Thus, our data match the expectations of the dispersal
hypotheses. However, early developing fruits were predicted to have the greatest dormancy
(i.e. our biggest ornamented fruits that developed most slowly and are expected to exhibit

Fig. 5. Fitness based upon fruit production is an estimate of the reproductive potential via the female
sexual function and was computed as the product of the fitness based on flower production and the
average number of fruits per inflorescence. Here we show how this estimate of fitness is influenced by
fruit morph, density and watering treatments.
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dormancy). Contrary to these expectations, seeds from these large fruits had the highest
germination rates at both temperatures. While late developing fruits were expected to have
the least dormancy (i.e. our small non-ornamented fruits should not be dormant), these
seeds had the lowest germination rate. There were two hypotheses that dealt with diversity.
Plants in nutrient-rich environments (our wet environment) were predicted to have the
greatest variation in the types of fruits produced, and locally dispersed fruits were predicted
to produce the lowest diversity of fruit types (McEvoy, 1984; Tanowitz et al., 1987; Venable
et al., 1987). The diversity of fruit types was largely independent of watering treatment,
density and the size of fruit the parent plant came from. These factors should profoundly
impact available resources. Thus, our results do not support either prediction.

CONCLUSION

Calendula micrantha is unique in the Asteraceae in that it produces six types of fruits
exclusively from ray flowers, and the largest fruits are adapted to be most broadly dispersed,
have the largest embryos and are best able to accommodate highly competitive situations.
Each fruit type does appear to be adapted to different environmental conditions. As a
general rule, parameters associated with male fitness, flower number, frequency of flowering
and floral sex ratio were unaffected by the size of fruit a plant came from. However,
resource-intensive parameters (e.g. fruit number and fruit mass) were strongly influenced by
the size of fruit a plant came from. Coupled with our results on density, this suggests that,
as fruit population density increases, plants modify their own resource investments (into the
various different morphs) and that this, in turn, has profound implications for sex allocation
strategies of their progeny.
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