Functional and phylogenetic constraints in Rhinocerotinae craniodental morphology

Paolo Piras¹, Leonardo Maiorino¹, Pasquale Raia¹,², Federica Marcolini¹, Daniele Salvi¹,⁴, Leonardo Vignoli¹,³ and Tassos Kotsakis¹,⁵

¹Center for Evolutionary Ecology, Università di Roma Tre, Rome, Italy, ²Earth Science Department, Università di Napoli Federico II, Naples, Italy, ³Department of Environmental Biology, Università di Roma Tre, Rome, Italy, ⁴CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, Vairão, Portugal and ⁵Geological Sciences Department, Università di Roma Tre, Rome, Italy

ABSTRACT

Hypotheses: After the effect of phylogeny is statistically removed, cranial structures that are employed solely for mastication should covary the most with hypsodonty (high-crowned cheek teeth are termed ‘hypsodont’). Such structures should also be the least phylogenetically constrained. A corollary: structures that are highly influenced by shared ancestry will exhibit greater morphological integration than those that are affected less.

Organisms: All extant rhinoceroses and a number of extinct, European, Plio-Pleistocene species.

Analytical methods: Using two-dimensional geometric morphometrics, we studied skull shape in the dorsal and lateral views, mandible shape in the lateral view, and the upper tooth row shape in the occlusal view. To reflect feeding habits, we used a surrogate variable, the hypsodonty index. Using phylogenetically independent contrasts and variation partitioning, we separated shape variation into function, phylogeny, and size components. We tested morphological integration with Escoufier’s RV coefficient.

Results: The mandible and the upper tooth row have the highest covariance with hypsodonty and the least with phylogeny. Skull morphology shows the reverse; it has the smallest covariance with hypsodonty and the highest with phylogeny. The degree of morphological integration between the upper tooth row and the other structures is relatively low, indicating that the former component is the least phylogenetically constrained. In keeping with our predictions, the cranial region associated with chewing is constrained by function and not as much by phylogeny, whereas others show stronger phylogenetic constraint.

Keywords: comparative methods, craniodental morphology, Europe, feeding habits, geometric morphometrics, Plio-Pleistocene, Rhinocerotinae.
INTRODUCTION

Ungulate diets and the environments they live in are closely connected (Sponheimer et al., 2003). Dietary preferences in these mammals correlate with morphological specialization in both digestive strategy (Janis, 1976; Demment and Van Soest, 1985; Claus et al., 2003; Claus and Hummel, 2005) and skull morphology, affecting rostrum, mandible, and tooth shapes (Gordon and Illius, 1988; Solounias et al., 1988, 1995; Janis, 1995; Perez-Barberia and Gordon, 1999, 2001; Williams and Kay, 2001; Mendoza et al., 2002; Mendoza and Palmqvist, 2008; Raia et al., 2010).

This close association between diet and morphology allows feeding habits in extinct species to be inferred. Even when no intelligible cranial remains are available, diets can still be ascertained with some accuracy by calculating the relative molar teeth crown height (the so-called hypsodonty index). In fact, short-crowned molars usually indicate a diet of soft plants (i.e. browsing), whereas high-crowned molars indicate grass feeding (i.e. grazing).

However, Fortelius and Solounias (2000) suggested that hypsodonty belongs to the preformed adaptations in deep time and for this reason it might, occasionally, be a poor indicator of diet. They proposed the method of ‘mesowear’ as a tool to allow finer inference of diet in extinct and extant species. Using this method, Kahlke and Kaiser (in press) found that Stephanorhinus hundsheimensis, a very common rhino in the Early and Middle Pleistocene of Europe, had very different dietary preferences at two different German sites, reflecting an overall catholic diet enabling the species to adapt to different food types. Mesowear analysis measures the abrasiveness of different diets on cheek teeth by inspection of the development of tooth facets and cusp shape (Fortelius and Solounias, 2000). Fortelius and Solounias (2000) argued that hypsodonty is essentially a reflection of the overall tooth wear rate, and its relationship with food quality is expected to be considerably less specific than that with mesowear. In contrast, when large-scale dietary classes are used, short-crowned molars consistently indicate a browsing diet, whereas high-crowned molars allow feeding on grasses, or grazing (Feranec, 2007).

Although variation in craniodental shape is correlated with diet, several recent studies argue against the idea that this correlation is promoted by adaptation (Pérez-Barberia and Gordon, 1999, 2001; Raia et al., 2010). Pérez-Barberia and Gordon (1999, 2001) tested the correlation of several morphological cranial variables with diet in ungulates, and found that only the length of the coronoid process, body size, and hypsodonty index correlate well with feeding habits after phylogeny is accounted for. Raia et al. (2010) found that ungulate mandible shape is significantly affected by hypsodonty index, but only above the species level, and in combination with the differences in digestive anatomy between odd- and even-toed species. The relationship between diet and craniodental variation in herbivore crania is very complex because of the functional, phylogenetic, and biomechanical constraints in design that affect such a multi-purpose structure (Meloro et al., 2008; Raia et al., 2010), and which need to be integrated with each other to some extent to allow for optimal performance of their common function (Klingenberg, 2009), which is mastication. Rhinos are interesting in this regard because of their peculiar skull morphology, their long evolutionary history, and the variety of feeding adaptations they acquired in the past, and in part show nowadays.

Rhinos first appeared in North America, Europe, and Asia with the genus Hyrachyus in the middle Eocene, and have diversified since in a great variety of forms spread over all continents except South America and Oceania. Most authors currently accept that there are three valid families of rhinos – Hyracodontidae, Amynodontidae, and Rhinocerotidae – whose diversity (taken as a whole) swung dramatically from a peak during the Miocene.
to the current paucity of species. Extant rhinos (all belonging to Rhinocerotidae) are represented by only four genera and five species (*Ceratotherium simum*, *Diceros bicornis*, *Rhinoceros unicornis*, *Rhinoceros sondaicus*, and *Dicerorhinus sumatrensis*). Zeuner (1934) first highlighted that browsing and grazing rhinos possess different angles between the occiput and the palate due to different head posture during feeding. Bales (1996) analysed the morphological variation in extant rhinos’ skulls in relation to the orientation of the masseter and posterior temporalis muscles. He then extended his comparisons to the early Oligocene genus *Subhyracodon*, which he deemed to be ‘representative of the primitive rhinoceros skull condition’, by means of two-dimensional geometric morphometrics. Bales (1996) concluded that mandibular suspension evolved according to the feeding habits in the extant rhino skulls and to the head posture during feeding in an adaptive fashion. However, he recognized that both adaptation and phylogenetic inheritance had played a role in moulding skull shape variation during rhinos’ history, but without providing any quantitative assessment for this notion.

Exploring the interplay between morphology, function, and phylogeny pertains to the debate about the nature of ‘constraints’ in the evolutionary process. The meaning of the term ‘constraint’ has led to many disputes. Schwenk (1995) argued that phylogeny cannot be considered a constraint in itself because it is just the result (i.e. a pattern) of historical contingency. Maynard Smith et al. (1985), Gould and Lewontin (1979), Arthur (2001), and Gould (2002) suggested a positive meaning of the term ‘constraint’ for it might promote new heritable variation. Independently of the preferred semantics used indicating the role of phylogenetic inheritance and adaptation in evolution, these two aspects should be considered simultaneously when the phenotype (i.e. morphology in this study) is under investigation. As for the meaning of ‘adaptation’ with reference to biological structures, we adopt a narrow definition, which is any heritable trait that signifies a solution to a problem that current environmental conditions present and that appears simultaneously or soon after the new environmental condition sets in (after Arnold, 1994; Strömberg, 2006; cf. Gould and Vrba, 1982). In the present context, such an adaptation is the evolution of high-crowned molars, as measured by relative molar crown height or the ‘hypsodonty index’.

We investigated the influence of phylogeny, size, and hypsodonty index on Rhinocerotinae craniodental morphology by means of two different comparative methods, phylogenetically independent contrasts and variation partitioning. The hypsodonty index is not presumed to be equally associated with morphological changes in different craniodental anatomical regions.

We assessed the degree of morphological integration among three hypothesized craniodental modules (skull – captured in the dorsal and lateral views – mandible, and upper tooth row). Although the skull region simplifies a complex system that previous studies have demonstrated actually encompasses multiple phenotypic modules (e.g. Cheverud, 1982, 1989, 1995; Zelditch, 1988; Zelditch and Carmichael, 1989a, 1989b; Leamy et al., 1999; Ackermann and Cheverud, 2000, 2004a, 2004b; Lieberman et al., 2000; Marroig and Cheverud, 2001; Strait, 2001; Hallgrimsson et al., 2002; Marroig et al., 2004; Zelditch and Moscarella, 2004; Bastir and Rosas, 2005, 2006; Goswami, 2006; Goswami and Prochel, 2007; Drake and Klingenberg, 2010; Goswami and Polly, 2010; Piras et al., 2010), the point here is to distinguish the regions most involved in mastication (mandible and upper tooth row) from the rest of the cranium. While several studies have examined morphological integration within the mammalian mandible (Atchley et al., 1982; Atchley and Hall, 1991; Cheverud et al., 1991, 1997, 2004; Atchley, 1993; Badyaev and Foresman, 2000, 2004; Klingenberg and Leamy, 2001; Klingenberg et al., 2001, 2003, 2004; Leamy et al., 2002; Ehrich et al., 2003; Cheverud, 2004; Badyaev et al., 2005; Polly, 2005; Márquez, 2008; Klingenberg, 2009; Zelditch et al., 2009), relatively
few have directly compared the integration of the mandible with other cranial regions. Our specific aim here is to interpret the morphological integration between these structures as a constraint on their morphological variation. This allows us to test the prediction that morphological integration between parts should be lowest where the influence of adaptation is the greatest. This is the case because strong integration among modules may act as a constraint (Klingenberg, 2005; Drake and Klingenberg, 2010; Goswami and Polly, 2010), and patterns of morphological integration are expected to reflect functional association among parts (Wagner and Altenberg, 1996). In the present context, we predict that the mandible and the upper tooth row will show greater covariation with the hypsodonty index than with the skull. Usually, modularity studies have the aim of testing the reliability of modules a posteriori starting from a priori hypotheses about modular structure within super-modules [e.g. the vertebrate mandible (Marquez, 2008) or Drosophila wings (Klingenberg, 2009)]. There is no reason here to test a posteriori our modular hypothesis, as these structures are physically independent (tooth row, mandibles, and skull). Moreover, we want here to measure the covariation between the four configurations, rather than to explore their inner modularity patterns.

Young and Hallgrimsson (2005) investigated the covariation structure between forelimb and hindlimb in mammals, relating the amount of covariation to its role as a constraint on their morphological variation. Similarly, in this paper we identified super-modules as different structures involved in the feeding process and differently constrained by phylogeny and shared ancestry.

METHODS AND MATERIALS

Materials

We took pictures of the skull in the dorsal and lateral views, the mandible in the lateral view, and the upper tooth row in the occlusal view, for all extant rhino species [Diceros bicornis (Linnaeus 1758), Ceratotherium simum (Burchell 1817), Dicerorhinus sumatrensis (Fisher von Waldheim 1814), Rhinoceros sondaicus (Desmarest 1822), Rhinoceros unicornis (Linnaeus 1758)] plus six extinct species that occur in the Plio-Pleistocene fossil record of Europe [Stephanorhinus etruscus (Falconer 1868), Stephanorhinus jeanvireti (Guérin 1972), Stephanorhinus hundsheimensis (Toula 1902), Stephanorhinus hemitoechus (Falconer 1868), Stephanorhinus kirchbergensis (Jäger 1839) and Coelodonta antiquitatis (Blumenbach 1799)]. Altogether, 179 specimens were analysed. Details about the number of specimens per species and per configuration are provided in Online Appendix I (evolutionary-ecology.com/data/2578Appendix-1.pdf). As for living rhinos, we only included wild specimens, since animals bred in captivity very often show growth abnormalities and bone tissue deformations. We formally eliminated any possible influence of intraspecific allometry (due to sex differences or small age differences) by performing our analyses on shape residuals obtained from species-specific regressions between shape and size.

Geometric morphometrics

Landmarks and semi-landmarks (landmarks only for the upper tooth row; Fig. 1) were digitized on each specimen picture to capture a detailed representation of shape. Type I, II, and III landmarks (Bookstein, 1991) were used. As for the landmarks digitized on the upper tooth row occlusal view, only those points whose homology based on mammalian tooth
structure is recognizable were selected. We followed the recommendations of Marcus et al. (2000) and Mullin and Taylor (2002) so as to avoid parallax errors and to maintain uniform measurement error on pictures. Digitization of all images (skulls, mandibles, and upper tooth rows) was carried out with tpsDig2 software (Rohlf, 2005). We used generalized procrustes analysis [GPA (Bookstein, 1991)] to analyse shape. GPA rotates, aligns, and scales landmark configurations to the centroid size \(CS = \text{the square root of the sum of squared distances of a set of landmarks from their centroid} \) (Bookstein, 1986). Rotation of the scaled and translated landmark sets is achieved by comparison with a reference configuration (the first specimen in the data set was used here). Once the rotation has been completed, a mean shape is calculated and the rotation process repeated using the mean shape as the reference configuration for the sample (including the previous, empirical, reference-specimen configuration). This mean-shape/rotation procedure is iterated to minimize rotation differences between subsequent iterations. Residual differences are to be ascribed to real shape differences plus measurement error. Principal components analysis (PCA) was performed on the shape residuals to identify orthogonal axes of maximal variation. This is the standard procedure in geometric morphometric studies (Adams et al., 2004).

Perez et al. (2006) stated that semi-landmarks differ from landmarks because in addition to translating, scaling, and rotating landmarks optimally, the semi-landmark points are slid along the outline curve until they match as well as possible the positions of corresponding points along an outline in a reference configuration (Adams et al., 2004). This is done because the curves or contours should be homologous from subject to subject, whereas their individual points need not be (Bookstein et al., 2002). A separate sliding semi-landmark file was prepared for tpsRelw to distinguish landmarks from semi-landmarks. This way tpsRelw performs the relative warp analysis using sliding-landmark information during computation (see software details at http://life.bio.sunysb.edu/morph/). To check if error in digitization affects the calculation of interspecific shape variance, 10 pictures were randomly selected and re-digitized five times. Then, the difference in morphological disparity \(\Delta \) (shape variance) between them was calculated. Finally, 900 bootstrap random sets of the 50 \((5 \times 10)\) pictures were produced and the difference in disparity between replicated sets and random sets compared. If the average distance between the replicated sets is statistically lower than between random sets, we assume error in digitization is not affecting the calculation of interspecific shape variance in our analyses.

Function: hypsodonty index and feeding categories

In ungulates, a hypsodont (= high crowned) molar is considered to be the principal adaptation for feeding on grasses (Feranec, 2007; Janis, 2008), and rhinos are no exception (Mendoza and Palmqvist, 2008). A hypsodonty index (HI) was calculated on upper third molars in both extant and extinct rhinos, by dividing the upper third molar height by width at the tooth base (Guérin, 1980), and by averaging HI values for any species over a number of unworn teeth we measured directly.

Before using HI in all analyses, we verified that it is a good predictor of diet by regressing feeding category (as the dependent variable) against HI (as the independent variable). We used a special class of linear regression, namely ordinal regression (McCullagh, 1980), which takes into account an ordinal dependent variable. The variable diet was coded in ascending order in grazer, mixed feeder, and browser categories, as is usual with ungulates (Fortelius, 1982; Nowak, 1991; Emslie and Brooks, 1999; Mendoza and Palmqvist, 2008). In addition, we performed an ANOVA
using HI as the dependent variable and feeding categories as factor. To take into account phylogeny, we repeated ANOVA with a phylogenetic ANOVA (Garland et al., 1993) implemented in the R-package 'geiger' (Harmon et al., 2009).

For extant species, attribution of feeding category is certain as it is based upon direct observation during feeding (Mendoza and Palmqvist, 2008). For extinct species, feeding category was attributed based on indirect indicators such as cranial morphology, head posture (Loose, 1975; Kahlke and Lacombat, 2008), postcranial features (Fortelius et al., 1993; Lacombat, 2003), and paleoenvironmental data (see Table 1), to avoid the circular argument of inferring diet from HI.

Fig. 1. (A) Landmark configuration of rhino skull in the lateral view (scale bar = 5 cm). 1, Anterior tip of the nasal bones; 2, upper tip of the nasal bones; 3, maximum point of curvature of the frontal-parietal area; 4, maximum point of curvature of the posterior area of the chignon; 5, posterior tip of the occipital condyle; 6, lower tip of the nasal bones; 7, lower tip of the post-glenoid condyle; 8, upper tip of the zygomatic arch; 9, lower tip of the orbit; 10, anterior tip of the orbit; 11, upper tip of the orbit; 12, infra-orbit foramen; 13, posterior tip of the nasal incision; 14, upper anterior tip of the premaxillary; 15, lower anterior tip of the premaxillary; 16, projection, on the lower side of the nasal, of landmark 2; 17, projection, on the lower side of the premaxillary, of landmark 2; 18, anterior tip of the upper tooth row; 19, posterior tip of the upper premolar row; 20, posterior tip of the upper tooth row; 21, upper tip of the occipital condyle; 22, lower tip of the occipital condyle; 23, anterior tip of the post-tympanic apophysis; 24, lower tip of the acoustic pseudo-meatus; 25, upper concavity of the posterior part of the zygomatic arch; 26, lower concavity of the posterior part of the zygomatic arch; 27, projection, on the lower anterior side of the zygomatic arch, of landmark 10. (B) Landmark configuration of rhino skull in the dorsal view (scale bar = 5 cm). 1, Anterior tip of the skull; 2, right concavity of the nasal rugosity; 3, left concavity of the nasal rugosity; 4, anterior tip of the right orbit; 5, right edge tip of the zygomatic arch; 6, maximum right constriction of the parietal; 7, posterior right tip of the occiput; 8, posterior tip of the skull; 9, posterior left tip of the occiput; 10, left edge tip of the zygomatic arch; 11, maximum left constriction of the parietal; 12, anterior tip of the left orbit; 13, lacrimal-caudal right process; 14, lacrimal-caudal left process; 15, right maximum anterior convexity of the medial parietal border of the orbital contour; 16, left maximum anterior convexity of the medial parietal border of the orbital contour; 17, right edge of the orbit contour; 18, left edge of the orbit contour; 19, right posterior tip of the orbit contour; 20, left posterior tip of the orbit contour; 21, maximum right constriction of the parietal crest; 22, maximum left constriction of the parietal crest; 23, right concavity, of the parietal crest, between landmarks 21 and 7; 24, left concavity, of the parietal crest, between landmarks 22 and 9. (C) Landmark configuration of rhino upper tooth row (scale bar = 5 cm). 1, Anterior-most tip of the upper tooth row; 2, end of the upper tooth row; 3, apex of paracone fold of P3; 4, apex of paracone fold of P4; 5, apex of paracone fold of P5; 6, apex of paracone fold of M1; 7, apex of paracone fold of M2; 8, apex of paracone fold of M3; 9, mesostylus of P3; 10, mesostylus of P4; 11, mesostylus of P5; 12, crochet of P3; 13, crochet of M1; 14, crochet of M2; 15, crochet of M3; 16, metastylus of P4; 17, metastylus of M1; 18, metastylus of M2. (D) Landmark configuration of rhino mandible (scale bar = 5 cm). 1, Beginning of the lower tooth row; 2, end of the lower tooth row; 3, end of the premolar row (P4) and beginning of the molar row; 4, anterior extremity of the mandible symphysis; 5, upper extremity of the coronoid process; 6, ventral tip of the sigmoid incision; 7, upper extremity of the condylar process; 8, posterior extremity of the crest of the condylar process; 9, inflection point of the neck of the condylar process; 10, posterior extremity of the horizontal branch of the mandible; 11, projection of landmark 2 to the lower edge of the mandible; 12, projection of landmark 1 to the lower edge of the mandible; 13, projection of the line linking landmarks 1–2 to the posterior part of the horizontal branch; 14, vertex of landmarks 11–2–14 of 60°; 15, point of maximum curve of the anterior side of the vertical branch; 16, projection of landmark 3 to the lower edge of the mandible.
Table 1. Assignment of species to feeding categories (the predicted category according to ordinal regression is given in parentheses)

<table>
<thead>
<tr>
<th>Species</th>
<th>Diet</th>
<th>Inferred from</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diceros bicornis</td>
<td>Browser</td>
<td>Direct observation</td>
<td>Nowak (1991); Codron et al. (2007); Cumming et al. (1990); Dierenfeld (1995); www.rhinoresourcecenter.com</td>
</tr>
<tr>
<td>Ceratotherium simum</td>
<td>Grazer</td>
<td>Direct observation</td>
<td>Nowak (1991); Codron et al. (2007); Cumming et al. (1990); Shrader et al. (2006); www.rhinoresourcecenter.com</td>
</tr>
<tr>
<td>Diceros sumatrensis</td>
<td>Browser</td>
<td>Direct observation</td>
<td>Dierenfeld (1995); www.rhinos-irf.org; www.rhinoresourcecenter.com</td>
</tr>
<tr>
<td>Rhinoceros sondaicus</td>
<td>Browser</td>
<td>Direct observation</td>
<td>Pratiknyo (1991); www.rhinos-irf.org; www.rhinoresourcecenter.com</td>
</tr>
<tr>
<td>Rhinoceros unicornis</td>
<td>Mixed feeder</td>
<td>Direct observation</td>
<td>Fortelius (1982); Laurie (1982); Laurie et al. (1983); www.rhinoresourcecenter.com</td>
</tr>
<tr>
<td>Coelodonta antiquitatis</td>
<td>Grazer</td>
<td>Faunal complex, post-cranial features, paleoenvironment</td>
<td>Fortelius (1982); Lacombat (2003); Kallke and Lacombat (2008)</td>
</tr>
<tr>
<td>Stephanorhinus etruscus</td>
<td>Browser</td>
<td>Faunal complex, post-cranial features, paleoenvironment</td>
<td>Fortelius (1982); Fortelius et al. (1993); Mazza and Azzaroli (1993); Lacombat (2003)</td>
</tr>
<tr>
<td>Stephanorhinus hundsheimensis</td>
<td>Browser</td>
<td>Faunal complex, post-cranial features, paleoenvironment</td>
<td>Fortelius et al. (1993); Mazza and Azzaroli (1993); Lacombat (2003)</td>
</tr>
<tr>
<td>Stephanorhinus jeannovireti</td>
<td>Browser</td>
<td>Faunal complex, paleoenvironment</td>
<td>Guérin (1980)</td>
</tr>
<tr>
<td>Stephanorhinus kirchbergensis</td>
<td>Browser</td>
<td>Faunal complex, post-cranial features, paleoenvironment</td>
<td>Fortelius (1982); Loose (1975); Fortelius et al. (1993); Lacombat (2003)</td>
</tr>
</tbody>
</table>
Although it might seem odd inferring diet from postcranial material, this procedure reflects
known adaptation in the ungulate skeleton to live in different environments exploiting
different food items (Owen-Smith, 1988; Spencer, 1995). This is true for rhinos as well (Fortelius et al., 1993;
Mazza and Azzaroli, 1993). For instance, head posture, neck length, and the length of the spinal
processes of the anterior thoracic vertebrae allow one to differentiate browsing from grazing
rhinos. Limb proportions indicate the degree of cursoriality and were used as indicators of
feeding behaviour as well, since open habitats are usually covered with grasses (Agusti and
Anton, 2002; Lacombat, 2003). Moreover, the fossil associations our rhino species were part of are
often indicative of habitat, since many other species were known to be habitat specialists
(e.g. woolly rhino often occurs with the woolly mammoth, which was a steppe specialist).

In Table 1 we report attribution of diet category for all of the species analysed here and
the references upon which the assignments were made.

Shape–size and shape–hypodonty index relationships
For each landmark configuration (skull in dorsal and lateral views, mandible in lateral view,
and upper tooth row in the occlusal view), separate multivariate regressions between
Procrustes shape coordinates (dependent variables) and HI (independent variable) were
performed, to assess global morphological changes associated with HI. The same procedure
was performed using size (logCS) as an independent variable to explore morphological
variation associated with interspecific size differences (intraspecific differences were formally
removed by using residuals of per-species regressions between shape and size). MorphoJ
(Klingenberg, 2011) was used to perform multivariate regressions. Its algorithm returns a vector
of regression scores for shape that represents the shape correlated the most with the
independent variable (HI or size).

Phylogeny
A phylogenetic tree including all species studied here (Fig. 2) was built in Mesquite 2.5
(Maddison and Maddison, 2007). For the extant rhinoceroses, recent papers based on genetic
distances (Tougard et al., 2001; Orlando et al., 2003; Prithiviraj et al., 2006), from which we retain the tree
topology, were used. Branch lengths were calibrated in millions of years (Ma) based on the
fossil record. For topological, geographical, and biochronological information concern-
ing the extinct rhinoceroses of the genus Stephanorhinus, we used the tree topology
proposed by Lacombat (2003); for the genus Diplotus, we followed Heissig (1989) and
Giaourtsakis et al. (2006); for Coelodonta, we followed Kahike and Lacombat (2008); and for
the tribe Elasmotheriina, we followed Antoine (2002). For the African genera Ceratotherium
and Diceros, we followed Cerdeño (1998) and Geraads (2005). For the Asiatic genera
Dicerorhinus and Rhinoceros, we followed Groves and Kurt (1972), Tong (2001), Nanda (2002),
and Louys et al. (2007).

Phylogenetic comparative methods
In comparative studies of organisms’ traits, the observations are rarely independent of each
other because of phylogenetic relationships (Felsenstein, 1985; Harvey and Pagel, 1991; Garland et al., 1992).
To take into account the non-independence of data points due to phylogeny, a number
of comparative methods have been proposed in the literature. Most of these have their
Fig. 2. Phylogenetic tree used for this study. Scale is in millions of years (Ma).
pros and cons (Martins et al., 2002; Garland et al., 2005; Lavin et al., 2008), consequently it is advisable to adopt more than one method at any time (Garland et al., 2005). We followed this recommendation and applied both phylogenetically independent contrasts (PICs) and variation partitioning (VARPART).

Since Felsenstein’s (1985) seminal paper, PICs represent the main comparative method (Garland, 1992). Rohlf (2001, 2006) demonstrated that PICs are a special case of phylogenetic generalized least squares (PGLS) regression. In generalized least squares (GLS) regression, a known (or hypothesized) covariance matrix of the residuals on the dependent variable Y is used to back-transform the regression variables and estimate regression coefficients anew. In comparative studies, the structure of residuals is the tree-based phylogenetic variance–covariance matrix, and GLS is explicitly defined as ‘phylogenetic’ (hence PGLS). Thus, PGLS draws from the tree topology and branch lengths the variance–covariance matrix of the error term ε in the regression equation $Y = \beta X + \varepsilon$, assuming evolution proceeds based on a Brownian motion model. Brownian motion represents fluctuating selection with constant trait variance (Rohlf, 2001, 2006; Blomberg et al., 2003; Adams, 2008; Lavin et al., 2008). The initial regression equation is then transformed via the GLS procedure as $Y' = \beta' X' + \varepsilon'$, which has uncorrelated errors with equal variance (Rohlf, 2001, 2006). PICs, computed in MorphoJ 1.01b (Klingenberg, 2011) for shape (Procrustes coordinates previously aligned using semi-landmarks), HI, and logCS, were averaged by species and compared with ordinary least squares regression models (OLS).

Variation partitioning [VARPART (Desdevises et al., 2003)] is a development of phylogenetic eigenvector analysis [PVR (Diniz-Filho et al., 1998)] based on partial regressions. The rationale underlying VARPART is to extract a set of continuous variables from a given phylogeny to be used in standard regression analyses so as to assess the dependent variable’s variance due to phylogeny as in common multiple regression. This is done by first computing the distance matrix between taxa based on branch lengths and then by performing a principal coordinates analysis on this matrix to extract a set of orthogonal continuous variables (PCoords). Rohlf (2001) criticized matrices based on path length distances of the type used here, stating that they do not represent the expected amount of independent evolution since divergence from a common ancestor, although ultrametric and path length distances are usually highly correlated (Rohlf’s words in italics). We do not believe that the height above the tree root of the common ancestor is the most appropriate metric when the phylogenetic tree is not ultrametric because species in a pair may have very unequal duration (for example, in our case, by more than 4 Ma). Thus, by using covariance between species pairs, we can ignore that these two species could have had very different periods of time to evolve their shapes.

Diniz-Filho et al. (1998) proposed using the broken-stick model (Frontier, 1976) to select PCoords. Rohlf (2001) and Martins et al. (2002) noted that this approach does not allow one to take the entire phylogeny into account. Desieves et al. (2003) similarly criticized the broken-stick criterion and alternatively proposed testing principal coordinates individually to determine their influence on the dependent variables. In keeping with this criticism, we retained here all the PCoords that explained at least 95% of the cumulative variance. We emphasize, however, that using PCoords that explained up to 99.9% of variance returned identical results.

Borcard et al. (1992) and Deserves et al. (2003) proposed a method to partial out the interactions between different sets of variables during a multiple multivariate regression that can be summarized as follows: Y is the dependent variable, here represented by shape
(i.e. all non-zero PCs), X_1 represents an independent variable (here HI), X_2 stands for the PCoords explaining at least 95% of total variance, and X_3 represents log$_{10}$ centroid size (logCS). First, a regression of Y on X_1 is computed. The coefficient of (multiple) determination of the regression, R^2, is equal to the fraction $a + d + f + g$ in the decomposition scheme in Fig. 3. Second, Y is similarly regressed on X_2 and X_3. Here R^2 is equal to fractions $b + d + e + g$ and $c + e + f + g$ of the decomposition scheme in Fig. 3. Then, Y is regressed on all independent variables; the resulting R^2 is equal to the fit of the entire model. The individual values of fractions a, b, and c can be obtained by subtraction from the previous results. The ‘overlap’ fraction $f + g$ is the phylogenetically structured functional variation (Cubo et al., 2005). After obtaining these individual fractions, the residual variation can be estimated by $d = 1 - (a + b + c + d + e + f + g)$. It is then possible to obtain the fitted values corresponding to fractions a, b, and c. For example, for a it is necessary to compute a partial regression of Y on X_1, using X_2 and X_3 as covariates. The R^2 computed this way corresponds to fraction a, and can be tested for significance. Fraction c is similarly obtained by partial regression of Y on X_3, using X_1 and X_2 as covariates. The overlap fractions (including the phylogenetically structured functional variation, $d + e + f + g$) can only be obtained by subtraction. Hence, it is not possible to test them for significance (Borcard et al., 1992). Further details about the individual steps of the variation partitioning method can be found in Desdevises et al. (2003) and Cubo et al. (2008). In multiple multivariate regressions, the R^2 is flawed due to the unequal number of variables per explanatory factor. Factors including more variables will have higher R^2 (Ohtani, 2000). In the present study, because phylogeny as a factor includes more variables than HI or logCS, we would overestimate the importance of phylogeny in regressions against shape. Consequently, we used adjusted R^2 coefficients, which account for overfitting and produce unbiased estimates of the fractions of variation of the response variable explained by each factor (Peres-Neto et al., 2006; Ramette and Tiedje, 2007).

Variation partitioning was computed by using the library ‘vegan’ (Oksanen et al., 2008) for R (R Development Core Team, 2010). The Stratigraphic tool module (Josse et al., 2006) was used to produce the phylogenetic distance matrix (D) to be exported and successively analysed with PCO3 software (Anderson, 2003).

Fig. 3. Decomposition scheme for the variation partition analysis explained in the text.
Morphological integration

We tested that the shape configuration (module) most influenced by pure HI (and the least by pure phylogeny; see below) was less integrated with the others. Integration and modularity are studied by analyzing the covariation among modules. Here we used a metric of covariation between the various sets of variables: the RV coefficient (Escoufier, 1973). This coefficient was originally proposed by Escoufier (1973) as a measure of the association between two sets of variables (e.g. X and Y): $RV = \text{tr}(Y^t X X^t Y) / \left\{ \text{tr}(X^t X) \text{tr}(Y^t Y) \right\}^{1/2}$ (where X and Y are the Procrustes coordinates matrices of the different modules, and tr indicates the trace of a matrix). The RV coefficient is analogous to the R-square in the univariate case (Claude, 2008). The equation for calculating RV therefore represents the amount of covariation scaled by the amount of variation within the two sets of variables, which is analogous to the calculation of the correlation coefficient between two variables (Klingenberg, 2009). RV may take any value from 0 to 1.

RESULTS

Geometric morphometrics

The difference in disparity between replicated sets is statistically lower than between random sets (mandibles, simulated $P = 0.045$; skulls, simulated $P = 0.025$; teeth, simulated $P = 0.030$). This means that error in digitization does not have a significant effect on shape analysis.

In the four configurations, the first 15 principal components explain collectively some 95% of total shape variance. Figure 4 shows the relationships between PC1 and PC2 for each of the four configurations. In the lateral skull view, a strongly concave and dolicocephalic skull with a shallow nasal incision corresponds to low PC1 values, whereas at high values the skull is less concave, with a backward shifted occiput and deep nasal incision. At positive PC2 values, the nasal bone becomes more and more bulky as the nasal incision is less pronounced. At the same values, the premaxilla is short and the orbit low. In the dorsal skull view, along PC1 the skull occiput becomes more and more massive, as do the nasal and parietal bones. High values in PC2 are associated with long and slender nasal bones and a short occiput. Regarding morphology of the mandible, along PC1 the horizontal ramus becomes slender as the ascending ramus shortens. On PC2 the horizontal ramus assumes a convex profile and the ascending ramus inclines posteriorly as one moves from low to high scores. Finally, the upper tooth row becomes slender, shows more developed crests on the buccal side, and proportionally smaller M^3 as one moves towards positive scores along PC1. Along PC2, the tooth row shows labially shifted crochets and appears more curved.

Relationship between hypsodonty index and feeding categories

Ordinal regression between HI and feeding categories is significant ($P \ll 0.001$; Cox and Snell pseudo $R^2 = 0.36$). Predicted diet categories are show in Table 1. While grazers and browsers are correctly classified, the mixed feeders are classified as browsers. The ANOVA is significant ($P = 0.022$) as well as the phylogenetic ANOVA ($P = 0.009$). Thus, we can assume that HI is a good predictor of feeding habits for extant and extinct rhinos and can be used in the following statistical analyses.
Fig. 4. Scatterplots between PC1 and PC2 for the four configurations: (A) skull in lateral view, (B) skull in dorsal view, (C) mandible, (D) upper tooth row. Deformation grids refer to PC axis extremes (positive and negative). The percentages of total variance explained are given in parentheses.
Fig. 4. Continued.
Shape–size and shape–hypodonty index relationships

For the dorsal skull view, multivariate regression between shape variables and logCS is significant (Wilks’ lambda = 0.36; P = 0.003). Goodall’s F-test revealed that size explains 12.95% of shape variance. Figure 5A shows morphological changes in skull dorsal view that are associated with HI. Larger size implies a massive skull with a well-developed occiput, strongly developed nasal-parietal bones, and proportionally smaller orbits. Multivariate regression between shape variables and HI is significant (Wilks’ lambda = 0.0014; P ≈ 0.001). Goodall’s F-test indicates that HI explains 20.78% of shape. Major changes associated with high HI values are a strongly developed occiput and a short and large nasal-parietal portion of the skull.

For the lateral skull view, multivariate regression between shape variables and logCS is significant (Wilks’ lambda = 0.24; P = 0.009). Goodall’s F-test indicates that size explains 12.73% of shape variance. Major changes associated with larger size are the occiput well developed posteriorly, massive nasal bones, a deep nasal incision, and a proportionally shorter tooth row. Figure 5B shows morphological changes in skull lateral view that are associated with HI. Multivariate regression between shape variables and HI is significant (Wilks’ lambda = 0.014; P ≪ 0.001). Goodall’s F-test indicates that HI explains 22.65% of shape variance. Major changes associated with high HI values are the occiput well developed posteriorly, massive and short nasal bones, a shallow nasal incision, and a low placement of the orbit in the skull.

For the mandible (Fig. 6A), multivariate regression between shape variables and logCS is significant (Wilks’ lambda = 0.30; P ≪ 0.001). Goodall’s F-test indicates that size explains 15.55% of shape variance. Major changes associated with small size imply a relatively longer tooth row, and a long and slender horizontal ramus. Multivariate regression between shape variables and HI is significant (Wilks’ lambda = 0.062; P ≪ 0.001). Goodall’s F-test indicates that HI explains 25.52% of shape variance. Figure 6A shows morphological changes in mandible morphology associated with HI. Major changes associated with high HI values are a large mandible showing a well-developed concave profile along the ventral edge of the horizontal ramus and posterior to the ascending ramus.

For the upper tooth row occlusal view (Fig. 6B), multivariate regression between shape variables and logCS is significant (Wilks’ lambda = 0.46; P = 0.0001). Goodall’s F-test test reveals that size explains 3.69% of shape. Major changes associated with large size are represented by the loss of saw-like morphology of the tooth row with the labial edges of P4, M1, and M2 being slightly flattened (Fortelius, 1981, 1982). Multivariate regression between shape variables and HI is significant (Wilks’ lambda = 0.1117; P ≪ 0.001). Goodall’s F-test revealed that HI explains 15.92% of shape. Figure 6B shows morphological changes in the upper tooth row associated with HI. Major changes associated with high HI values include a slightly squared profile with the labial edge of P4, M4, M2, and M3 slightly flattened labially.

Comparative methods

Table 2 shows results of OLS and PICs regressions performed on shape–HI and shape–logCS relationships for the four configurations. All relationships are significant in the PICs regressions except for the shape–HI relationship in the skull dorsal view and the shape–size relationship in the upper tooth row. Starting from this, to explore the differential contribution of HI and phylogeny we applied VARPART to separate pure from entire
fractions of HI, phylogeny, and size simultaneously. Figure 7 shows the results of the VARPART analyses for the four configurations. Details of all fractions are given in Online Appendix 2 (evolutionary-ecology.com/data/2578/Appendix-2.pdf).

The two methods returned consistent results, indicating a strong influence of phylogeny and a weaker influence of pure HI on skull morphology; and a strong influence of pure HI on the mandible and on the upper tooth row. In particular, pure HI is higher for the mandible and slightly smaller for the upper tooth row, while pure phylogeny presents a decreasing gradient from skull to mandible to upper tooth row.

Morphological integration

As anticipated, the configuration (module) showing the strongest influence of pure HI is least integrated with the other configurations (Table 3). Thus, the upper tooth row configuration shows the smallest R^2 coefficients on average. Covariation of the tooth row with the mandible is higher than with the skull. All the configurations covary significantly, however, indicating some degree of integration within these parts, despite the different effects that HI and phylogeny have on them.

| Table 2. OLS and PICs analyses for shape–HI and shape–size relationships |
|-----------------------------|-----------------------------|
| | OLS | PICs |
| | % predicted (P-value) | % predicted (P-value) |
| **Shape–HI relationship** | | |
| Skull, dorsal view | 17.5 (0.12) | 18.4 (0.053) |
| Skull, lateral view | 17.5 (0.13) | 28.2 (0.006) |
| Mandible | 26.6 (0.03) | 43.5 (0.001) |
| Upper tooth row | 29.4 (0.038) | 29.9 (0.01) |
| **Shape–size relationship** | | |
| Skull, dorsal view | 18.1 (0.12) | 21.6 (0.039) |
| Skull, lateral view | 18.47 (0.11) | 30.5 (0.027) |
| Mandible | 31.9 (0.007) | 64.4 (0.0001) |
| Upper tooth row | 5.26 (0.7) | 13.6 (0.35) |

| Table 3. R^2 coefficients (below the diagonal) and the associated simulated P-values after 10,000 permutations (above the diagonal) for testing covariation between module shapes |
|-----------------|-----------------|-----------------|-----------------|
| | dv | lv | mand | ut |
| dv | 1 | <0.001 | <0.001 | <0.001 |
| lv | 0.868 | 1 | <0.001 | <0.001 |
| mand | 0.677 | 0.694 | 1 | <0.001 |
| ut | 0.505 | 0.441 | 0.519 | 1 |

Note: dv = skull, dorsal view; lv = skull, lateral view; mand = mandible, lateral view; ut = upper tooth row, occlusal view.
Fig. 5. Scatterplot between regression scores of shape and HI and associated shape changes. (A) Skull in dorsal view, (B) skull in lateral view.
Fig. 6. Scatterplot between regression scores of shape and HI and associated shape changes. (A) Mandible, (B) upper tooth row.
Fig. 7. VARPART results for the four configurations.
Fig. 7. Continued.
DISCUSSION

Once the phylogenetic covariation between operative taxonomic units (i.e. species in our case) is accounted for, the shape–HI relationship is significant for all configurations except for the skull dorsal view. Biologically, this suggests that an association exists between cranial shape and relative crown height.

By applying VARPART, we may further explore this relationship by testing phylogeny and HI in isolation as explanatory factors of shape variance. Phylogeny has the largest influence on shape variance in all configurations. However, a progressive decrease of the variance explained by the pure phylogenetic fraction, and a progressive increase from the skull to the upper tooth row and the mandible in the variance explained by the pure HI fraction is apparent. These results suggest that feeding adaptation has a greater influence on those structures directly involved in food processing (i.e. the mandible and the tooth row) once the effect of phylogeny is partialled out.

An opposite pattern emerges when looking at the pure phylogeny fraction. This is largest in the dorsal and lateral skull views. This suggests that the upper tooth row and the mandible were less constrained by shared ancestry. VARPART results show, however, that the ‘entire’ HI fraction (of shape variance explained) is largest with the mandible and then the skull compared with the upper tooth row. On the other hand, skull shape changes are strongly phylogenetically structured. Moreover, it should be noted that given the difficulties in identifying homologies in grazers’ and browsers’ upper tooth rows, we choose their landmark configuration with ‘parsimony’ and it is probable that our results underestimate the relationship between upper tooth row shape and HI. In fact, when looking at the upper tooth rows of grazers and browsers, dramatic differences are evident. If the two morphotypes need to be contrasted in a common morphospace, only a conservative configuration can be digitized for both morphotypes. Taking this into account, we suggest that pure HI should covary with upper tooth row morphology even more than observed here.

The overlapping fractions of VARPART between phylogeny and HI deserve particular attention. This fraction is the phylogenetically structured functional variation (PSFV) (Westoby et al., 1995; Desseines et al., 2003; Cubo et al., 2005). In Fig. 7, PSFV is represented by the fraction $d + g$ in all four configurations. It relates to conserved synapomorphies with functional implications, in contrast to labile, convergent traits that have functional significance only. From our results it is evident that craniofacial morphology and muscle orientation are tightly linked to feeding adaptation. But adaptation (as reflected in HI) and phylogeny are strongly related in the skull (about 19–20% of shape variance explained by PSFV; see Figs. 7A and B). For the mandible, this interaction is slightly weaker (some 17% of variance explained; Fig. 7C). Upper tooth row is the configuration with the smallest PSFV value (~7%) compared with the other anatomical areas. These results suggest that HI is highly phylogenetically structured in the skull (and slightly less so in the mandible), reflecting shared synapomorphies (Raia et al., 2010). Tooth row, in contrast, appears to be the least influenced structure by the phylogenetic structured functional variation.

Morphology of the upper tooth row profile becomes saw-like shaped in browsers due to the rostrocaudal alignment of the paracone, mesostylus, and metastylus, while in grazers it is more rounded. We argue that the upper tooth row morphology lost the saw-like profile in grazers because of the abrasive grasses they feed on [as suggested by Fortelius (1982), among others]. This feature profoundly modified the grazing rhino dentition, whose rate of consumption during feeding is much higher than that of browsers (Fig. 6B).
Bales (1996) suggested that adaptation to either grazing or browsing significantly affects skull anatomy in rhinos because of the different functional demands the skull muscles exert on the mandible and on the occipital portion of the skull. Grazers and browsers have different head postures (Owen-Smith, 1988), with the head being lowered in grazers (Figure 9 in Bales, 1996). The occiput is shifted backward and the occipital plate is oriented differently in grazers (Fortelius et al., 1993; Bales, 1996; Lacombat, 2003). This implies a larger suspensory role for the posterior temporalis that is counteracted by the orientation of the masseter muscle. In grazers, the latter has a small vertical component, since the mandible does not need to be suspended against gravity due to its lowered position (i.e. the momentum of the mandible lever arm is smaller in grazers). In terms of mandible morphology, the outcome of this muscular geometry produces proportionally longer horizontal rami in browsers (see Fig. 6A). As stated earlier, a raised head position implies a forward inclined occipital profile (which occurs in browsers). From a biomechanical point of view, this morphology allows a better lever for neck muscles.

The prediction that the module that is simultaneously correlated the most with (pure) HI and the least with (pure) phylogeny should be less integrated with the other modules was confirmed by our results. The RV coefficients indicate that the upper tooth row is less integrated with the skull and mandible than the latter are to each other. This suggests that the upper tooth row shape has been driven more by adaptation to current conditions (not phylogenetically structured) than by shared ancestry due to phylogenetic relationships, compared with any other structure shape considered here. Morphological integration predicts that strongly covarying modules will co-evolve because of their coordinated response to selection. Functional integration is expected to occur when the modules share a common function (Cheverud, 1996). This integration can be thought of as a relative constraint, since tightly integrated parts are less able to respond to independent selective pressures (i.e. they possess less evolvability). This reduction in evolvability is not irreversible, since a reduction in functional and hence developmental interactions among modules may occur under selection for functional specialization (Hallgrimsson et al., 2002). In the history of ungulates, a major change in selection regime for feeding occurred with the spread of grasslands in the Miocene (Janis, 2008). Browsing, and the possession of low-crowned molars, is the plesiomorphic condition for the clade, and for rhinos as well. The acquisition of hypsodont molars served as the primary adaptation to exploitation of grass. Here we dissected the nature of the phenotypic response to grazing in rhinos, and found that the (upper) tooth row is the most evolvable structure in the cranium, with a cascade of phenotypic effects descending in intensity from the teeth to the mandible [whose phenotypic response is architecturally mediated by the requirement to house longer teeth roots (Raia et al., 2010)] to the skull. This suggests that teeth are the most evolvable structure in rhino crania, as previously found in carnivores (Dayan et al., 2002).

CONCLUSIONS

Both phylogeny and function differentially affect craniodental morphology in extant and extinct rhinoceroses. This notion holds when two different comparative methods are applied. As expected, structures more thoroughly dedicated to mastication show the least covariation with phylogeny and the most covariation with the hypsodonty index. After applying the variation partitioning analysis, pure phylogeny’s influence on shape variation decreases from skull to mandible to upper tooth row (occlusal view). In contrast, the
influence of pure HI increases from skull to mandible to upper tooth row. Yet, skull morphology shows a strong covariation with HI when the effect of the latter is estimated in interaction with phylogeny (phylogenetically structured functional variation), indicating that adaptation to different feeding styles occurs deep in the rhino tree rather than at the tips (that is, it applies above the species level). In the case of rhinos, such morphological changes include a different design of the posterior part of the skull, which is in fact known to change with feeding style. Pure size of the structures does not explain important portions of morphological variance.

The prediction that the structure least correlated with phylogeny and more correlated with pure HI (i.e. the upper tooth row) should be the least integrated with the other structures is confirmed by Escoufier’s RV coefficient. This suggests that, whereas mandible and skull are constrained by phylogeny and (developmental) integration between each other, the upper tooth row is less influenced by this sort of covariation with other cranial structures, and therefore is the more free to evolve. This study confirms previous results obtained on carnivores (Dayan et al., 2002), reaffirming that mammalian teeth are the most plastic cranial structure in evolutionary terms.

ACKNOWLEDGEMENTS

We are grateful to Mikael Fortelius and two anonymous reviewers for deep and insightful comments on the manuscript, which allowed us to produce a better picture of rhino craniodental evolution.

REFERENCES

Cubo, J., Legendre, P., de Ricqlès, A., Montes, L., de Margerie, E., Castanet, J. et al. 2008. Phylo-

