PLANT DEFENCES AT NO COST? THE RECOVERY OF TUNDRA SCRUBLAND FOLLOWING HEAVY GRAZING BY GREY-SIDED VOLES, *MYODES RUFOCANUS*

Jonas Dahlgren¹,², Lauri Oksanen¹,⁴, Johan Olofsson¹ and Tarja Oksanen¹

¹Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden, ²Department of Forest Resource Management, Swedish University of Agricultural Sciences, Uppsala, Sweden, ³Department of Biology, Section of Ecology, University of Turku, Turku, Finland and ⁴Department of Natural Sciences, Finnmark University College, Alta, Norway

ABSTRACT

Background: Evergreen ericaceous dwarf shrubs form a dominating component of low arctic and low alpine vegetation. They typically produce high contents of secondary chemicals such as phenolics. The primary function of these chemicals may be to defend the shrubs by making them less palatable to herbivores.

Question: Does the production of secondary chemicals carry a fitness cost in terms of low growth rate and, therefore, low capacity to recover from past herbivory?

Methods: In 2000, we constructed vole-proof exclosures on low arctic islands where vegetation had, since 1991, been heavily impacted by grey-sided voles. In 2000 and 2003, we surveyed the vegetation of the exclosures, of unfenced plots on the same islands, and of control plots on a vole-free island. We used the point-frequency method for vegetation surveys.

Results: In the exclosures, the biomasses of most plant species increased, by and large, at the same pace. The two woody species, which increased most rapidly, were the maximally palatable bilberry (*Vaccinium myrtillus*) and the phenolics-laden, maximally unpalatable northern crowberry (*Empetrum nigrum* ssp. *hermaprhoditum*). The recovery rates of these species were similar.

Conclusions: The high concentrations of phenolics typical for evergreen arctic dwarf shrubs do not carry any obvious cost in the form of reduced capacity for compensatory growth. The principle of trade-offs does not help to explain the variation in plant palatability.

Keywords: arctic, herbivory, multiple benefits, *Myodes rufocanus*, resistance, tolerance, trade-offs, tundra, vegetation recovery, voles.

Correspondence: L. Oksanen, Department of Biology, Section of Ecology, University of Turku, FI-200 14 Turku, Finland. e-mail: lauoks@utu.fi

Consult the copyright statement on the inside front cover for non-commercial copying policies.

© 2009 Lauri Oksanen
INTRODUCTION

A characteristic feature of northern tundra and mountain areas is the abundance of evergreen ericoids in nutrient-poor upland habitats (Nordhagen, 1928; Kalliola, 1939; Dahl, 1957; Oksanen and Virtanen, 1995; Virtanen et al., 1999a, 1999b; Nilsson et al., 2002). These plants accumulate phenolics, which constitute about 15–20% of the dry weight of their leaves (Jonasson et al., 1986; Nilsson et al., 1998, 2000; Gallet et al., 1999; Shetsova et al., 2005; Hansen et al., 2006). Similar dry weight percentages have also been reported for co-existing deciduous dwarf shrubs (Jonasson et al., 1986; Oksanen et al., 1987; Graglia et al., 2001; Hansen et al., 2006), but the values for evergreen ericoids imply much higher amounts of phenolics per leaf area unit and per unit weight of palatable mesophyll material. Much of the dry weight of evergreen ericoid leaves consists of other poorly palatable material, such as cuticles and internal support structures, increasing their weight-to-area ratio (Woodward, 1986; Van Wijk et al., 2005) (see also Table 1) and reducing their palatability. Therefore, herbivores seldom forage on evergreen ericoids, unless facing an acute risk of starvation (Kalela, 1957; Aleksandrova et al., 1964; Skjenneberg and Slagsvold, 1968; Emanuelsson, 1984; Moen et al., 1993a; Hambäck and Ekerholm, 1997; Rammul et al., 2007).

Nutrient-poor low arctic and low alpine heaths are characterized by periodically intense impacts of arvicoline rodents and migratory reindeer/caribou on the vegetation (Nordhagen, 1928; Thomirnov, 1959; Kalela, 1971; Oksanen and Oksanen, 1981; Emanuelsson, 1984; Moen et al., 1993b; Créte and Doucet, 1998; Olofsson et al., 2001, 2004a, 2005; Bråthen et al., 2007), which could conceivably favour inedible plants (Harper, 1969; Crawley, 1983, 1990; Pastor and Naiman, 1992; Schmitz, 1994, 2006; Polis and Strong, 1996; Schmitz et al., 2000; Rausher, 2001). The other option — tolerance and a capacity for rapid compensatory growth (McNaughton, 1979; Oesterheld and McNaughton, 1991; Strauss and Agrawal, 1999; Rausher, 2001; Del-Val and Crawley, 2005) — should be less advantageous in nutrient-poor tundra habitats, where plants cannot grow rapidly anyway (Grime, 1979) and where a surplus of reduced carbon therefore often accumulates (Bryant et al., 1983; Oksanen, 1990; Honkanen and Haukioja, 1998; Jones and Hartley, 1999).

Nevertheless, resistance and tolerance represent two alternative strategies to tackle herbivory and alternative uses of reduced carbon, making a trade-off likely (Van der Meijden et al., 1988; Herms and Mattson, 1992; Rosenthal and Kotanen, 1994). Moreover, the high content of phenolics in evergreen ericoids does not emerge as a passive consequence of a nutrient shortage and the subsequent shunting of the surplus carbon to phenolics, as proposed by Bryant et al. (1983). Contrary to the predictions of their carbon–nutrient balance hypothesis, evergreen ericoids do not respond to shading by reducing the concentration of phenolics in their leaves (Hansen et al., 2006). Moreover, the northern crowberry, Empetrum nigrum ssp. hermaphroditum, starts to accumulate phenolics in the current year’s leaves by early summer (Nilsson et al., 1998), when conditions for growth are optimal (Chapin, 1987). These observations indicate an active and potentially costly synthesis of phenolics. The trade-off between defence and compensatory growth should become acute when herbivory has speeded up nutrient circulation, thus increasing the marginal costs of reduced carbon (Zimov et al., 1995; Olofsson et al., 2001, 2004b).

To test the hypothesis of a trade-off between defence (resistance) and capacity for compensatory growth (tolerance), we thus excluded herbivorous vertebrates from parts of low arctic islands that had for a decade been strongly impacted by food-limited voles (Hambäck et al., 2004; Dahlgren et al., 2009). The vegetation of these islands consisted of both unpalatable evergreen ericoids and palatable herbs and deciduous dwarf shrubs. According to the predictions of the trade-off hypothesis, the palatable plants with low defensive budgets should recover rapidly, while the heavily defended evergreens should increase slowly, if at all.
METHODS

The study was conducted in the freshwater archipelago of Lake Iešjávri, Norwegian Lapland, where in 1991 we had introduced grey-sided voles (*Myodes rufocanus* Pall.) on four two-trophic-level islands, isolated enough to be practically predator-free (Hambäck et al., 2004; Dahlgren et al., 2007, 2009; Aunapuu et al., 2008). A fifth island, to be referred to as the one-trophic-level island, did not show any signs of past rodent activity in 1991 and has since remained rodent free owing to continual trapping, including intensive snap-trapping when needed. For the composition of the vegetation and the characteristics of the common species, see Table 1. For a detailed description of the system, see Dahlgren et al. (2009) and Aunapuu et al. (2008).

In spring 2000, we built a vole exclosure of 2×2 m on each two-trophic-level island. We used galvanized hardware netting with a mesh size of 1.2×1.2 cm. The net was 1 m high and was dug down into the mineral soil. Two poison-baited vole traps were placed in each exclosure to ensure that they would remain free from voles. The composition of the vegetation was recorded annually within the four permanent plots in each exclosure, and within eight unfenced permanent plots on the experimental islands (plot size 0.5×0.5 m, laid out in a fixed pattern), using the point-frequency method (Jonasson, 1988), with 100 sampling points per plot (pin diameter 2 mm). The one-trophic-level island had a similar set of unfenced plots, studied as above. All contacts between the green parts of vascular plants and the pin were recorded separately, except for the crowberry and other microphyllous plants (*Phyllodoce caerulea*, and club mosses) for which branches were treated as units. The point-frequency data were transformed to biomasses by undertaking separate point-frequency censuses on 90 additional plots in July 2003, followed by harvesting all shoots of vascular plants, sorting by species, drying for 48 h at 60°C, and weighing. Linear regressions between the point-frequencies and dry weights were thereafter computed for all species.

We computed the effects of vole exclusion on plant biomass in two ways: (1) by comparing changes in exclosures to changes on open plots within the same islands (the exclosure index, E); and (2) by comparing exclusion changes to changes on the one-trophic-level island (the recovery index, R). The strength of the exclusion index lies in the physical vicinity of the plots that are to be compared; its problem is that the dynamics on open plots are still far from asymptotic (Dahlgren et al., 2009). The recovery index relates changes in exclosures to the impacts of the physical environment on each species in a habitat free from herbivore impacts. Because we were working with a piece of inland tundra with low and variable winter precipitation, creating unpredictable variation in snow melt (Anonymous, 1978; Oksanen and Virtanen, 1995; Lippestad, 2007), it was important to control the experiment for the impacts of premature snow melt (see Dahl, 1957; Kullman, 1989) by having a reference island that was as exposed to the winds and late winter sunshine as were the two-trophic-level islands.

Eight plant species, to be referred to as the ‘common species’, were initially present in both exclosures and open plots on at least three two-trophic-level islands. For these species and for the community-level plant biomass, we first computed island-specific indices of relative biomass change (CB_{ij}) as ratios of final (2003) to initial (2000) biomass on each island and in both treatments. (Note that we use i to refer to the identity of the island and j to the treatments. For exclosures, $j = e$; for open plots on two-trophic-level islands, $j = o$; for the one-trophic-level island, $j = v$.) Island-specific exclosure indices, E_i, were then computed as $E_i = \ln(CB_{ie}/CB_{io})$. The island-specific recovery index, R_i, was computed as

Plant defences at no cost?
Table 1. Mean biomass (g·m\(^{-2}\)) of common plant species (present on at least three experimental islands) at the start and the end of the experiment on open and exclosure plots and on the one-trophic-level island, together with mean biomasses of all common plants and whole vascular vegetation at the start and the end of the experiment

<table>
<thead>
<tr>
<th>Common species</th>
<th>Leaf mass (g·m(^{-2}))</th>
<th>Characteristics</th>
<th>One-trophic level</th>
<th>Two-trophic level, open</th>
<th>Two-trophic level, exclosure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Edible</td>
<td>Chionophilic</td>
<td>Form</td>
<td>Start</td>
</tr>
<tr>
<td>Dwarf cornel, Cornus suecia</td>
<td>—</td>
<td>+</td>
<td>+</td>
<td>Herb</td>
<td>2</td>
</tr>
<tr>
<td>Cloudberry, Rubus chamaemorus</td>
<td>—</td>
<td>+++</td>
<td>++</td>
<td>Herb</td>
<td>12</td>
</tr>
<tr>
<td>Bilberry, Vaccinium myrtillus</td>
<td>60</td>
<td>+++</td>
<td>+++</td>
<td>Woody, deciduous</td>
<td>49</td>
</tr>
<tr>
<td>Arctic blueberry, Vaccinium uliginosum</td>
<td>80</td>
<td>+</td>
<td>–</td>
<td>Woody, deciduous</td>
<td>52</td>
</tr>
<tr>
<td>Dwarf birch, Betula nana</td>
<td>85</td>
<td>+</td>
<td>0</td>
<td>Woody, deciduous</td>
<td>353</td>
</tr>
<tr>
<td>Twinflower, Linnaea borealis</td>
<td>—</td>
<td>+</td>
<td>+</td>
<td>Woody, evergreen</td>
<td>0</td>
</tr>
<tr>
<td>Lingonberry, Vaccinium vitis-idaea</td>
<td>190</td>
<td>–</td>
<td>–</td>
<td>Woody, evergreen</td>
<td>41</td>
</tr>
<tr>
<td>Crowberry, Empetrum nigrum</td>
<td>240</td>
<td>–</td>
<td>–</td>
<td>Woody, evergreen</td>
<td>184</td>
</tr>
<tr>
<td>Common species biomass</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>693</td>
</tr>
<tr>
<td>Total vascular biomass</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>707</td>
</tr>
</tbody>
</table>

Note: The leaf mass column provides leaf dry weights of low arctic dwarf shrubs per square metre of leaf area (to an accuracy of 5 g), according to Woodward (1986), Nilsson *et al.* (2000), and Van Wijk *et al.* (2005). For species studied in several habitats, we present the average value. The three 'characteristics' columns provide information about: the edibility of the plants (Edible: +++ = maximally edible; —— = maximally inedible); their relation to snow cover (Chionophilic: +++ = maximally chionophilic, i.e. depends on snow lasting until summer; 0 = snow neutral; —— = maximally chionophobic, i.e. strongly favoured by early snow melt); and their growth forms (Form).
\[R_i = \ln(CB_i/\bar{C}B_i) \]. Species-specific indices were calculated directly from point-frequency scores without converting them to biomass. To avoid divisions by zero, we replaced zeros with 0.5. For the twinflower, *Linnaea borealis*, which was not recorded on the one-trophic-level island, we set \(CB_v = 1 \).

Treatment effects on the community- and species-level biomasses were examined with a *t*-test. The species-specific \(E_i \) and \(R_i \) values were analysed using analysis of variance (ANOVA) and Tukey’s *post hoc* test, which is controlled for mass significance and thus minimizes the risk of type I error. However, it is based on the assumption of statistical independence between the units that are to be compared, which is not the case in plant communities containing plants with similar responses to external factors. Therefore, all standard *post hoc* tests create a high risk of type II error when applied to plant communities: real interspecific differences tend to be obscured by the in-built Bonferroni-type corrections in large materials containing ecologically similar species. In our material, Tukey’s *post hoc* test yields a \(P \)-value of 0.4 for the same contrast for which a *t*-test yields \(P = 0.1 \).

To ameliorate the problem with type II error, we also conducted a principal components analysis (PCA) on the changes in the vegetation. In this analysis, we first standardized the sums of point-frequency scores of the eight common species in 2000 and in 2003 to unity for each island \(\times \) treatment combination, to ensure that abundance changes of all common species had equal impact on the result, ran the PCA, and used a *t*-test to determine whether the enclosure and open plots moved in different directions with respect to the first and second principal components. By combining changes in mutually correlated species to two principal components, both type I and type II errors are avoided, but the species-specific information is lost.

The PCA was carried out using SAS version 9.1. All other statistical tests were performed in SPSS (version 12-0 for Windows). Latin nomenclature was based on Lid (1987), Mitchell Jones *et al.* (1999), and DelHoyo *et al.* (1992), except that *Clethrionomys* was replaced by *Myodes* (Pall.), which has priority (Pavlinov, 2006). For the Latin names of the common plant species, see Table 1.

RESULTS

When the experiment began, community-level plant biomass on the exclosures of the two-trophic-level islands was only 55% of the community-level plant biomass on the one-trophic-level island, indicating strong suppression by vole herbivory and thus much potential for recovery. In fact, after the exclusion of voles, the community-level plant biomass doubled in 3 years. At the same time, the community-level plant biomass continued to decline on the open plots (Table 2). The exclosure and recovery indices for community-level plant biomass differed significantly from zero (exclosure index: \(t_6 = 5.382, P = 0.013 \); recovery index: \(t_6 = 12.667, P = 0.001 \)). The increases in community-level plant biomass varied little between islands (Figs. 1 and 2).

The recovery rates of individual species were more variable (Figs. 1 and 2). The results of ANOVA implied significant interspecific heterogeneity in recovery rates (exclosure index: \(F_{7,19} = 3.556, P = 0.014 \); recovery index: \(F_{7,19} = 3.313, P = 0.012 \), but in pairwise comparisons significant differences emerged only in those comparisons involving either the tiny (mean biomass in 2000 < 1 g \(\cdot \) m\(^{-2}\); see Table 1) and even initially sparse twinflower or the lingonberry, which recovered weakly, if at all (Fig. 1, Tables 2 and 3). All other species
recovered vigorously and, on average, largely at a similar pace to each other. But there were differences between islands (Fig. 2, Table 3).

Two species, bilberry and northern crowberry, appeared to respond to the exclusion of voles more positively than other plants. Their exclosure and their recovery indices were more than a standard error above the averages for community-level plant biomass (Figs. 1 and 2). For these species, the P-values for the null hypotheses of no interspecific difference in exclosure and recovery indices were high (>0.8; Table 2).

Table 2. Probability values for obtaining the observed interspecific differences under the null hypothesis ‘no interspecific difference in the exclosure (E) index’, yielded by Tukey’s post hoc test (below diagonal), and corresponding probability values for the null hypothesis ‘no interspecific difference in the recovery (R) index’ (above diagonal)

<table>
<thead>
<tr>
<th></th>
<th>Rcha</th>
<th>Csue</th>
<th>Vmyr</th>
<th>Vuli</th>
<th>Bnan</th>
<th>Lbor</th>
<th>Vvit</th>
<th>Enig</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rubus chamaemorus</td>
<td>1.00</td>
<td>0.99</td>
<td>0.98</td>
<td>0.96</td>
<td>0.89</td>
<td>0.03</td>
<td>0.39</td>
<td>1.00</td>
</tr>
<tr>
<td>Cornus suecica</td>
<td>1.00</td>
<td>0.69</td>
<td>1.00</td>
<td>1.00</td>
<td>0.22</td>
<td>0.92</td>
<td>1.00</td>
<td>0.03</td>
</tr>
<tr>
<td>Vaccinium myrtillus</td>
<td>0.55</td>
<td>0.52</td>
<td>0.57</td>
<td>0.41</td>
<td>0.01</td>
<td>0.08</td>
<td>0.85</td>
<td>0.00</td>
</tr>
<tr>
<td>Vaccinium uliginosum</td>
<td>1.00</td>
<td>1.00</td>
<td>0.89</td>
<td>1.00</td>
<td>0.29</td>
<td>0.97</td>
<td>1.00</td>
<td>0.01</td>
</tr>
<tr>
<td>Betula nana</td>
<td>1.00</td>
<td>1.00</td>
<td>0.38</td>
<td>0.99</td>
<td>0.06</td>
<td>0.99</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Linnaea borealis</td>
<td>0.11</td>
<td>0.22</td>
<td>0.00</td>
<td>0.07</td>
<td>0.01</td>
<td>0.08</td>
<td>0.79</td>
<td>0.01</td>
</tr>
<tr>
<td>Vaccinium vitis-idaea</td>
<td>1.00</td>
<td>1.00</td>
<td>0.01</td>
<td>0.09</td>
<td>0.09</td>
<td>0.99</td>
<td>0.79</td>
<td>0.99</td>
</tr>
<tr>
<td>Empetrum nigrum</td>
<td>0.99</td>
<td>1.00</td>
<td>0.91</td>
<td>1.00</td>
<td>0.98</td>
<td>0.06</td>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Note: Probability values <0.1 are shown in bold font.

Fig. 1. Responses of the common vascular plants to the exclusion of grey-sided voles, as indicated by the exclosure index ($Rcha =$ cloudberry, Rubus chamaemorus; $Csue =$ dwarf cornel, Cornus suecica; $Vmyr =$ bilberry, Vaccinium myrtillus; $Vuli =$ arctic blueberry, Vaccinium uliginosum; $Bnan =$ dwarf birch, Betula nana; $Lbor =$ twinflower, Linnaea borealis; $Vvit =$ lingonberry, Vaccinium vitis-idaea; $Enig =$ crowberry, Empetrum nigrum). Open circles refer to herbs, solid circles to deciduous dwarf shrubs, and black triangles to evergreens. The response of the community-level plant biomass (COM) to the exclusion of grey-sided voles is denoted by a white triangle and a horizontal line. Error bars represent standard errors. Responses are measured as natural logarithms of response ratios (lnRR), with open plots on the same islands as points of reference.
The first two principal components explained 64% of the variation in the vegetation. The first axis (eigenvalue 3.28, explaining 41%) was related to snow melt and palatability: poorly palatable, chionophobic (strongly favoured by early snow melt) ericaceous dwarf shrubs obtained high positive loadings (crowberry: 0.49; arctic blueberry: 0.43; lingonberry: 0.40), whereas the highest negative loadings were recorded for two herbs (dwarf cornel: -0.48; cloudberry: -0.40. The second axis (eigenvalue 1.82, explaining 23% of the variation) was related to the abundance relationships between bilberry (loading: +0.52) and dwarf birch (loading: -0.57).

With respect to the first axis, the exclosures changed very little during the experiment (Table 3), and the small movements of plots along this axis have no statistical relationship to the treatment ($t_{6} = 1.136, P = 0.299$). Along the second axis, the exclosures and open plots moved in different directions and the difference was marginally significant ($t_{6} = 2.153, P = 0.075$), indicating that bilberry recovered more rapidly than the comparatively tall dwarf birch.

Table 3. Changes in the positions of the open plots and exclosures in the coordinate space defined by the first two principal components from 2000 to 2003 (islands are used as replicates; i.e. $n = 4$)

<table>
<thead>
<tr>
<th></th>
<th>PC1</th>
<th>PC2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exclosures</td>
<td>-0.003 ± 0.283</td>
<td>$+0.311 \pm 0.090$</td>
</tr>
<tr>
<td>Open plots</td>
<td>-1.033 ± 0.862</td>
<td>-0.317 ± 0.278</td>
</tr>
</tbody>
</table>

Fig. 2. Responses of the common vascular plants to the exclusion of grey-sided voles, as indicated by the recovery index (Rcha = cloudberry, *Rubus chamaemorus*; Csue = dwarf cornel, *Cornus suecica*; Vmyr = bilberry, *Vaccinium myrtillus*; Vuli = arctic blueberry, *Vaccinium uliginosum*; Bnan = dwarf birch, *Betula nana*; Lbor = twinflower, *Linnaea borealis*; Vvit = lingonberry, *Vaccinium vitis-idaea*; Enig = crowberry, *Empetrum nigrum*). Open circles refer to herbs, solid circles to deciduous dwarf shrubs, and black triangles to evergreens. The response of the community-level plant biomass (COM) to the exclusion of grey-sided voles is denoted by a white triangle and a horizontal line. Error bars represent standard errors. Responses are measured as natural logarithms of response ratios (lnRR), with the plots on the one-trophic-level island as points of reference.
DISCUSSION

The exclusion of voles resulted in a vigorous increase in community-level plant biomass. The increase was spatially consistent at the community level but the results of ANOVA highlighted significant differences in the responses of different species. Pairwise tests indicated that the aberrant behaviour of two species, the twinflower and the lingonberry, accounted for the heterogeneity revealed by the ANOVAs. The principal components analysis nuanced this picture by indicating that the tallest woody plant in our material, the dwarf birch, recovered slowly, as it has done in areas subjected to intense grazing by caribou (Crête and Doucet, 1998).

Contrary to the predictions of the trade-off hypothesis, the maximally unpalatable northern crowberry recovered at the same pace as the highly palatable bilberry. The physical conditions (low snowfall resulting in early snow melts) were favourable for the chionophobic crowberry and stressful for the chionophilic (depends on snow lasting until summer) bilberry (Table 1) (see also Dahl, 1957), but the indices were controlled for this source of bias (see Methods). Note also that the plots did not move along the first principal component, reflecting the relationship to snow cover.

The negative treatment response of the tiny, trailing twinflower (foliage height < 1 cm) does not provide evidence that defence is costly. Belonging to the Caprifoliaceae, the twinflower is taxonomically unrelated to ericoids and is moderately palatable to grey-sided voles (Ericson and Oksanen, 1987; Moen et al., 1993a). Its low stature and consequent poor ability to compete for light provide a plausible explanation for its poor performance in exclosures and for its absence from comparable scrublands on the one-trophic-level island.

The trade-off hypothesis is more plausible for the other poorly recovering evergreen, the lingonberry, but other results contradict this interpretation. In the studies of Tolvanen (1994) and Olofsson et al. (2004a, 2005), in which they examined the impacts of an intermittent disturbance, the lingonberry recovered as fast as the bilberry or even faster. It is therefore likely that the poor recovery of the lingonberry in our exclosures reflects the accumulated impacts of its heavy losses during the 1990s (Dahlgren et al., 2009), which have presumably drained its resources.

Our results are thus in line with the conclusion of Leimu and Koricheva (2006) that there is no consistent trade-off between resistance and tolerance. Whatever the metabolic costs of producing phenolics, they do not appear to result in a lower capacity to recover from past herbivory in this habitat (see also Rüpi et al., 2002). On balance, accumulation of phenolics does not provide an efficient defence against small herbivorous vertebrates either. In late winter, when food is running out, arctic herbivores take whatever they can get, including phenolics-laden evergreen ericoids (Pulliainen, 1970; Dahlgren et al., 2009). Instead of having a primarily defensive function, the phenolics of evergreen arctic ericoids may have evolved as weapons in plant–plant chemical warfare (Nilsson et al., 1998, 2000; Gallet et al., 1999; Shetsova et al., 2005). Phenolics also protect against physical stresses, such as photo-oxidation (Close and McArthur, 2002), which is probably more relevant than chemical warfare when a plant community is recovering from heavy herbivory.

Although the principle of trade-offs (Levins, 1968) is intellectually appealing and serves as a point of departure, it nevertheless only generates hypotheses – to be tested and exposed to the risk of refutation. Traits can provide multiple benefits. Hence adaptation need not be a zero sum game.
ACKNOWLEDGEMENTS

We thank the Swedish Natural Science Research Council, Swedish Council for Forestry and Agricultural Research, European Commission (projects ‘DART’, grant ENV4-CT97-0586 and ‘LACOPE’, grant EVK-2-CT_2002-00150) and the Academy of Finland for financial support, and the Norwegian authorities for the necessary permits. Marie Charlotte Nilsson helped us in formulating the manuscript. We also wish to thank N.R. Johnsen, O. Eriksen for technical assistance, and the many field workers for their devoted work.

REFERENCES

