Pelvic girdle reduction and asymmetry in threespine stickleback from Wallace Lake, Alaska

Emily A. Lescak¹, Frank A. von Hippel¹, Richard R. Bernhardt¹ and Michael A. Bell²

¹Department of Biological Sciences, University of Alaska Anchorage, Anchorage, Alaska, USA and ²Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York USA

ABSTRACT

Questions: Can a bimodal frequency distribution of phenotypes persist over multiple generations despite ecological changes? Can an organism’s environment elicit fitness trade-offs between armour development and somatic growth?

Background: Wallace Lake, located in south-central Alaska, contains a population of threespine stickleback (*Gasterosteus aculeatus*) exhibiting a bimodal distribution of pelvic phenotypes with modes at both highly reduced and fully developed pelvic armour. The lake has low ion availability, abundant macroinvertebrate predators, and introduced piscivorous fish.

Methods: Analyse temporal variability of the bimodal frequency distribution of pelvic phenotypes, direction and degree of asymmetry in bilateral armour traits, and whether extent of pelvic girdle development is inversely related to body size.

Conclusions: Distributions of pelvic phenotypes and of individuals with asymmetrical pelvic girdles persist over a 20-year time span. Individuals with greater pelvic expression exhibit more symmetrical anterior processes and ascending branches than those with pelvic reduction. Both directional and fluctuating asymmetry are present in armour traits. Stickleback with complete pelvic structures do not appear to experience reduced somatic growth compared with those with reduced pelvic girdles.

Keywords: directional asymmetry, disruptive selection, fluctuating asymmetry, frequency-dependent selection, stickleback.

INTRODUCTION

A core problem in evolutionary biology concerns the origin and maintenance of intra-specific divergence, a process that is crucial to intraspecific polymorphisms, speciation, and adaptive radiation (Mayr, 1963; Schluter, 2000, 2003; Nosil and Crespi, 2006; Grant and Grant, 2008). Traditionally, natural selection has been viewed to reduce intraspecific variation through elimination of unfit individuals (Fisher, 1930). However, both frequency-dependent and disruptive selection give rise to and maintain intraspecific variation.
Evolutionary Ecology Research is delighted that you wish to consult one of its articles.

You may if your library or laboratory subscribes.

Did you know that EER invented the idea of posting final drafts of mss as soon as they are accepted?

Ask your librarian or library committee why your place does not already subscribe to the low-cost journal that is publishing splendid science in a socially responsible manner. EER's low prices have helped librarians to rein in the indefensible cost increases that have reduced our access to science all over the world! Just ask our partners at SPARC — the Scholarly Publishing & Academic Resources Coalition of the Association of Research Libraries.

Or maybe you should just remind the folks who order your journals to contact us and subscribe! You need — and they should support — the journal that:

- Was the first journal in the world to allow e-only subscriptions while maintaining a traditional print edition, too.
- Vests the copyrights of all articles in their authors while preserving the rights of educational and research groups to use its material in classes, seminars, etc. at no additional cost.
- Maintains a unified data-base of articles so you can use your web browser to find any article, author, title word or keyword in any article that EER has ever published. (Forget about issue numbers, author order, and other such impediments to easy access.)
- Provides Webglimpse so that you can search any word, place, species, variable, phrase, keyword or author in any article EER has ever published.
- Provides its own new search filter that allows you instantly to compile a hot-linked list of articles according to year, issue, author, title word or keyword (as you prefer).

EER is the place to go for great science, responsible publication policies and easy access!

Click here for the Table of Contents of the most recent issue of Evolutionary Ecology Research

Click here for full access to a sample issue of Evolutionary Ecology Research

Click here for SUBSCRIPTION INFORMATION