Phenotypic plasticity and inbreeding depression in *Mimulus ringens* (Phrymaceae)

Lydia R. O’Halloran¹ and David E. Carr²

¹Department of Zoology, Oregon State University, Corvallis, Oregon and
²Blandy Experimental Farm, University of Virginia, Boyce, Virginia, USA

ABSTRACT

Hypothesis: The mating system (outbred or inbred) a plant utilizes could influence the degree of phenotypic plasticity exhibited by the progeny. We predicted that progeny of outbred parents would display greater phenotypic plasticity when grown under soil moisture stress than progeny of selfed individuals.

Organisms: Seventeen families (8 outbred and 9 selfed) of mixed-mating wetland species, *Mimulus ringens*, were grown along a soil moisture gradient in the field and in the greenhouse.

Times and places: Field and greenhouse experiments were conducted at the University of Virginia’s Blandy Experimental Farm, Boyce, Virginia, USA.

Analytical methods: Both fitness and morphological characters were measured for three soil moisture levels. All data were analysed using mixed-model analysis of variance or analogous accelerated failure time models. Two-way factorial analyses of variance were performed for each character to test for breeding (fixed) and water (fixed) effects individually and for their interactive effect across blocks (random). A difference in levels of plasticity was defined by a significant interaction effect between breeding and water.

Results: Inbreeding had little effect on phenotypic plasticity in the field or greenhouse. Plasticity in corolla width showed opposite patterns in inbred and outbred plants and growth rate showed greater plasticity in outbred plants in the greenhouse. There was little evidence of inbreeding depression among inbred or outbred *M. ringens*.

Keywords: inbreeding, *Mimulus ringens*, mixed-mating, phenotypic plasticity, water stress.

INTRODUCTION

The sessile nature of plants has made their survival contingent upon the ability to change their phenotype in response to spatial or temporal environmental heterogeneity. When populations are exposed to stressful environmental conditions such as low soil moisture, a reduction in the ability to be plastic could lead to decreased fitness for certain genotypes.

Correspondence: L.R. O’Halloran, Department of Zoology, Oregon State University, Corvallis, OR 97331, USA.
e-mail: riesl@science.oregonstate.edu
Consult the copyright statement on the inside front cover for non-commercial copying policies.

© 2010 Lydia R. O’Halloran
Evolutionary Ecology Research is delighted that you wish to consult one of its articles.

You may if your library or laboratory subscribes.

Did you know that EER invented the idea of posting final drafts of mss as soon as they are accepted?

Ask your librarian or library committee why your place does not already subscribe to the low-cost journal that is publishing splendid science in a socially responsible manner. EER's low prices have helped librarians to rein in the indefensible cost increases that have reduced our access to science all over the world! Just ask our partners at SPARC — the Scholarly Publishing & Academic Resources Coalition of the Association of Research Libraries.

Or maybe you should just remind the folks who order your journals to contact us and subscribe! You need — and they should support — the journal that:

- Was the first journal in the world to allow e-only subscriptions while maintaining a traditional print edition, too.
- Vests the copyrights of all articles in their authors while preserving the rights of educational and research groups to use its material in classes, seminars, etc. at no additional cost.
- Maintains a unified data-base of articles so you can use your web browser to find any article, author, title word or keyword in any article that EER has ever published. (Forget about issue numbers, author order, and other such impediments to easy access.)
- Provides Webglimpse so that you can search any word, place, species, variable, phrase, keyword or author in any article EER has ever published.
- Provides its own new search filter that allows you instantly to compile a hot-linked list of articles according year, issue, author, title word or keyword (as you prefer).

EER is the place to go for great science, responsible publication policies and easy access!

Click here for the Table of Contents of the most recent issue of Evolutionary Ecology Research

Click here for full access to a sample issue of Evolutionary Ecology Research

Click here for SUBSCRIPTION INFORMATION