The evolution of cooperation on fragmented landscapes: the spatial Hamilton rule

Feng Zhang1,2, Yi Tao1, Zizhen Li3 and Cang Hui2

1Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Science, Beijing, China, 2Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Matieland, South Africa and 3Department of Mathematics and Statistics, Lanzhou University, Lanzhou, China

ABSTRACT

\textbf{Question:} How does habitat destruction affect the evolution of cooperation?

\textbf{Methods:} Differential equations of the probabilities for different states in pairwise sites based on the Prisoner’s Dilemma game in a regular network.

\textbf{Key assumptions:} Individuals play the Prisoner’s Dilemma game with other individuals on directly connected (adjacent) sites. Individuals’ average payoff affects the birth rate. The population undergoes a birth–death process. Habitat loss and fragmentation in the network affect the population dynamics and the invasion and persistence of cooperation.

\textbf{Predictions:} (1) The evolution of cooperation is made possible through non-random encounters in a spatially local process. (2) Derive a spatial Hamilton rule whereby the proportion of cooperators among the neighbouring individuals of a cooperator serves the same role of relatedness as in kin selection, which is consistent with other forms of Hamilton rules. (3) The evolution of cooperation becomes easier in harsh environments. (4) The co-existence of multiple strategies in a species can maintain population size at a constant level.

\textit{Keywords:} evolutionary game, habitat loss, invasion analysis, pair approximation, Prisoner’s Dilemma.

INTRODUCTION

The evolution of cooperation and altruism remains a conundrum in biology and social science (Doebeli and Hauert, 2005). Cooperative individuals benefit others at personal cost and are easily exploited by other, selfish individuals (defectors). Therefore, cooperative behaviour is not an evolutionarily stable strategy (ESS) and fosters incompatibility with Darwinian natural selection. Nonetheless, examples of cooperation abound in nature, both between
Evolutionary Ecology Research is delighted that you wish to consult one of its articles.

You may if your library or laboratory subscribes.

Ask your librarian or library committee why your place does not already subscribe to the low-cost journal that is publishing splendid science in a socially responsible manner. EER's low prices have helped librarians to rein in the indefensible cost increases that have reduced our access to science all over the world! Just ask our partners at SPARC — the Scholarly Publishing & Academic Resources Coalition of the Association of Research Libraries.

Or maybe you should just remind the folks who order your journals to contact us and subscribe! You need — and they should support — the journal that:

- Invented the instant publication of reviewed, revised and accepted e-editions.
- Vests the copyrights of all articles in their authors while preserving the rights of educational and research groups to use its material in classes, seminars, etc. at no additional cost.
- Maintains a unified data-base of articles, thus doing away with your need to worry about issue numbers, author order, and other such impediments to easy access.
- Provides Webglimpse so that you can search any word, place, species, variable, phrase or author in any article EER has ever published.
- Pioneered e-only subscriptions while maintaining, at the same time, a traditional print edition, too.

Some 10,000 readers per week have it right. EER is the place to go for great science, responsible publication policies and easy access!

Click here for the Table of Contents of the most recent issue of Evolutionary Ecology Research

Click here for full access to a sample issue of Evolutionary Ecology Research

Click here for SUBSCRIPTION INFORMATION