Heteromorphic and isomorphic alternations of generations in macroalgae as adaptations to a seasonal environment

Kazuhiro Bessho and Yoh Iwasa

Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan

ABSTRACT

Background: Some macroalgae (seaweeds) have haploid and diploid life forms that differ greatly in size and morphology (heteromorphic life cycle). Others have very similar haploid and diploid life forms (isomorphic life cycle).

Questions: What are the optimal reproductive cycles for a heteromorphic species and for an isomorphic species? Under what circumstances will a heteromorphic life cycle be more advantageous than an isomorphic life cycle.

Mathematical model: We develop mathematical models for an optimal life cycle in one environment where productivity changes seasonally. The beginning and the end of generations are chosen to maximize the population growth rate.

Key assumption: The variety of life cycles observed among macroalgae reflects adaptations to seasonally changing environments.

Conclusions: (1) In heteromorphic species, the generation with a large body size should appear in the productive season and the generation with a small body size in the unproductive season. (2) In isomorphic species, algae of different generations should mature when body size reaches a certain common value, regardless of the environment of the generation. However, the length of a generation may vary greatly between seasons. (3) In a strongly seasonal environment, a heteromorphic life cycle is more profitable than an isomorphic life cycle.

Keywords: alternation of generations, heteromorphic life cycle, isomorphic life cycle, life-history diversity, macroalgae, seasonal environment.

INTRODUCTION

Seaweeds, or macroalgae, have very diverse life cycles (Wynne and Loiseaux, 1976; Umezaki, 1977; Nakahara, 1986; Verges et al., 2008). Especially notable is the difference between a heteromorphic life cycle and an isomorphic life cycle. In both life cycles, haploid and diploid generations alternate. However, in heteromorphic species, the size of the multicellular body is very
Evolutionary Ecology Research is delighted that you wish to consult one of its articles.

You may if your library or laboratory subscribes.

Ask your librarian or library committee why your place does not already subscribe to the low-cost journal that is publishing splendid science in a socially responsible manner. EER's low prices have helped librarians to rein in the indefensible cost increases that have reduced our access to science all over the world! Just ask our partners at SPARC — the Scholarly Publishing & Academic Resources Coalition of the Association of Research Libraries.

Or maybe you should just remind the folks who order your journals to contact us and subscribe! You need — and they should support — the journal that:

- Invented the instant publication of reviewed, revised and accepted e-editions.
- Vests the copyrights of all articles in their authors while preserving the rights of educational and research groups to use its material in classes, seminars, etc. at no additional cost.
- Maintains a unified data-base of articles, thus doing away with your need to worry about issue numbers, author order, and other such impediments to easy access.
- Provides Webglimpse so that you can search any word, place, species, variable, phrase or author in any article EER has ever published.
- Pioneered e-only subscriptions while maintaining, at the same time, a traditional print edition, too.

Some 10,000 readers per week have it right. EER is the place to go for great science, responsible publication policies and easy access!

Click here for the Table of Contents of the most recent issue of Evolutionary Ecology Research

Click here for full access to a sample issue of Evolutionary Ecology Research

Click here for SUBSCRIPTION INFORMATION