Evol Ecol Res 5: 273-286 (2003)     Full PDF if your library subscribes.

Bet-hedging and the evolution of multiple mating

Charles W. Fox* and Claudia M. Rauter‡

Department of Entomology, S-225 Agricultural Science Center North, University of Kentucky, Lexington, KY 40546-0091, USA

Author to whom all correspondence should be addressed.
e-mail: cfox@uky.edu

ABSTRACT

Two related bet-hedging hypotheses have been proposed to explain the evolution of multiple mating by females. The first examines fitness of females within a single type of environment, and predicts that multiple mating can increase fitness by reducing the probability that all of a female’s eggs are fertilized by a poor-quality male. The second examines fitness across environments and predicts that females who mate multiple times reduce the probability that all of their eggs are fertilized by a male that is unsuited to the current environment. We tested whether multiple mating actually provides the fitness benefits predicted by bet-hedging models by comparing the geometric mean fitness across generations of half-sib versus full-sib families of the milkweed bug, Lygaeus kalmii, reared on three different host plants. The variance in mean fitness (egg-to-adult survivorship) was always lower for offspring in half-sib families than for offspring of full-sib families. This translated into an average increase in geometric mean fitness of 4.1% within environments and 1.3% among environments for offspring of multiple-mated versus once-mated parents. These fitness increases are sufficient to produce rapid replacement of a once-mating genotype by a multiple-mating genotype. We conclude that multiple mating by parents reduces variation in offspring fitness and increases geometric mean fitness. We suggest that bet-hedging hypotheses are viable explanations for at least some of the variation in mating frequency observed in insects.

Keywords: bet-hedging, genetic benefits, geometric mean fitness, Lygaeus kalmii, multiple mating, polyandry.

DOWNLOAD A FREE, FULL PDF COPY
IF you are connected using the IP of a subscribing institution (library, laboratory, etc.)
or through its VPN.

 

        © 2003 Charles W. Fox. All EER articles are copyrighted by their authors. All authors endorse, permit and license Evolutionary Ecology Ltd. to grant its subscribing institutions/libraries the copying privileges specified below without additional consideration or payment to them or to Evolutionary Ecology, Ltd. These endorsements, in writing, are on file in the office of Evolutionary Ecology, Ltd. Consult authors for permission to use any portion of their work in derivative works, compilations or to distribute their work in any commercial manner.

       Subscribing institutions/libraries may grant individuals the privilege of making a single copy of an EER article for non-commercial educational or non-commercial research purposes. Subscribing institutions/libraries may also use articles for non-commercial educational purposes by making any number of copies for course packs or course reserve collections. Subscribing institutions/libraries may also loan single copies of articles to non-commercial libraries for educational purposes.

       All copies of abstracts and articles must preserve their copyright notice without modification.