State-dependent habitat selection games between predators and prey: the importance of behavioural interactions and expected lifetime reproductive success

Suzanne H. Alonzo*

Department of Environmental Studies and Institute of Marine Sciences,
University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA

ABSTRACT

The fitness of both prey and predators will be affected by the behaviour of conspecifics and other (predator or prey) species. However, little theory has considered the case where predators and prey respond to one another simultaneously. I present a framework that examines the impact of the predator–prey behavioural interactions (within and between species) in a state-dependent life-history context. I use multiple linked dynamic state variable game equations to predict the patch selection of prey and predators as a function of their energy reserves. When prey are expected to maximize their probability of survival, the individual predators and prey that are not at risk of starvation are predicted to be uniformly distributed among patches independent of the difference in resource input rates among sites. However, individuals near starvation cause more prey and predators to be found in high resource sites. In contrast, when predators and prey both maximize reproduction, predators and prey are predicted to show imperfect resource matching. The proportion of individuals at risk of starvation causes deviations from the perfect resource matching predicted by previous predator–prey games. The predicted patterns clearly illustrate the importance of recognizing that predators and prey will both respond concurrently to one another’s distributions. However, the models also illustrate that an organism’s state, competition among conspecifics and the life-history pattern of both predators and prey are key to understanding their distribution and behaviour. We can increase our understanding of these interactions and the distribution of predators and prey in space and time by combining the consideration of interactions within and between the species with knowledge of how foraging relates to lifetime expected reproductive success of both predators and prey.

Keywords: dynamic state variable model, game theory, habitat selection, life history, predator–prey interactions.

INTRODUCTION

Interactions between species are at the heart of many important ecological and evolutionary processes. Predator–prey dynamics are a classic and relatively well-studied example of
Evolutionary Ecology Research is delighted that you wish to consult one of its articles.

You may if your library or laboratory subscribes.

Ask your librarian or library committee why your place does not already subscribe to the low-cost journal that is publishing splendid science in a socially responsible manner. *EER*’s low prices have helped librarians to rein in the indefensible cost increases that have reduced our access to science all over the world! Just ask our partners at SPARC — the Scholarly Publishing & Academic Resources Coalition of the Association of Research Libraries.

Or maybe you should just remind the folks who order your journals to contact us and subscribe! You need — and they should support — the journal that:

- Invented the instant publication of reviewed, revised and accepted e-editions.
- Vests the copyrights of all articles in their authors while preserving the rights of educational and research groups to use its material in classes, seminars, etc. at no additional cost.
- Maintains a unified data-base of articles, thus doing away with your need to worry about issue numbers, author order, and other such impediments to easy access.
- Provides Webglimpse so that you can search any word, place, species, variable, phrase or author in any article *EER* has ever published.
- Pioneered e-only subscriptions while maintaining, at the same time, a traditional print edition, too.

Some 10,000 readers per week have it right. *EER* is the place to go for great science, responsible publication policies and easy access!

Click here for the Table of Contents of the most recent issue of Evolutionary Ecology Research

Click here for full access to a sample issue of Evolutionary Ecology Research

Click here for SUBSCRIPTION INFORMATION