Evol Ecol Res 4: 857-870 (2002) Full PDF if your library subscribes.
Plasticity constrained: over-generalized induction cues cause maladaptive phenotypes
R. Brian Langerhans and Thomas J. DeWitt*
Department of Wildlife and Fisheries Sciences, Texas A&M University, 2258 TAMU, College Station, TX 77843-2258, USA
Address correspondence to either author.
e-mail: brianl@tamu.edu; tdewitt@tamu.eduABSTRACT
The adaptive value of phenotypic plasticity depends upon the degree of match achieved between phenotype and environment. This match is governed in part by how well organisms discern environmental states (e.g. presence or absence of particular predators). To examine the specificity with which organisms use cues to induce defensive phenotypes, we raised freshwater snails, Physella virgata, with either molluscivorous or non-molluscivorous sunfish species (Lepomis cyanellus, L. gibbosus, L. macrochirus, L. megalotis, L. microlophus, Micropterus salmoides). Regardless of the predator class with which they were raised, snails exhibited two induced responses: (1) reduced growth and (2) development of rotund shells. Reduced growth typically results from predator avoidance behaviours and so is associated with a net survival benefit in environments containing molluscivores. Rotund shells increase crush resistance and so increase both handling time and rejection rates by molluscivorous sunfish. Despite the adaptive nature of these responses to molluscivorous species, responding unnecessarily to non-molluscivores is maladaptive. Growth reduction limits fecundity and prevents snails from attaining size refugia for most predators. Rotund shells increase vulnerability to shell-entry predators, which are typically more common than shell-crushing predators. Thus the induced responses entail costs but award no advantages in the presence of non-molluscivorous sunfish. Lack of specificity in use of cues (e.g. all sunfish treated alike) may be a major constraint on the evolution of phenotypic plasticity. Furthermore, these induced responses may produce trait-mediated indirect effects that cascade throughout the food web.
Keywords: evolutionary constraint, geometric morphometrics, inducible defences, multiple predators, phenotypic plasticity, shell morphology, trait-mediated indirect effects.
DOWNLOAD A FREE, FULL PDF COPY
IF you are connected using the IP of a subscribing institution (library, laboratory, etc.)
or through its VPN.
© 2002 R. Brian Langerhans and Thomas J. DeWitt. All EER articles are copyrighted by their authors. All authors endorse, permit and license Evolutionary Ecology Ltd. to grant its subscribing institutions/libraries the copying privileges specified below without additional consideration or payment to them or to Evolutionary Ecology, Ltd. These endorsements, in writing, are on file in the office of Evolutionary Ecology, Ltd. Consult authors for permission to use any portion of their work in derivative works, compilations or to distribute their work in any commercial manner.
Subscribing institutions/libraries may grant individuals the privilege of making a single copy of an EER article for non-commercial educational or non-commercial research purposes. Subscribing institutions/libraries may also use articles for non-commercial educational purposes by making any number of copies for course packs or course reserve collections. Subscribing institutions/libraries may also loan single copies of articles to non-commercial libraries for educational purposes.
All copies of abstracts and articles must preserve their copyright notice without modification.