Vigilance, patch use and habitat selection: Foraging under predation risk

Joel S. Brown*

Department of Biological Sciences, University of Illinois at Chicago, 845 W. Taylor Street, Chicago, IL 60607, USA

ABSTRACT

To balance conflicting demands for food and safety from predation, feeding animals have two useful tools. First, they can vary the amount of time they devote to harvesting patches that vary in predation risk and feeding rates. Second, they can use vigilance to trade-off food and safety while feeding from a food patch. I present a model for predicting how an optimal forager should jointly use these two tools. Factors influencing the use of these tools include encounter rate with predators, predator lethality in the absence of vigilance, effectiveness of vigilance in reducing predator lethality, the marginal value of energy to the forager and the forager’s survivor’s fitness. Patch-use behaviours influenced by these factors include vigilance level, quitting harvest rate and giving-up density (GUD). All three of these patch-use behaviours should increase in response to an increase in encounter rate with predators, predator lethality and the forager’s survivor’s fitness, and decrease with an increase in the marginal value of energy. In response to increasing the effectiveness of vigilance, vigilance should increase and the GUD and quitting harvest rate should decline. The amount of food left by a forager in a depletable food patch, the GUD, provides an empirical link for testing the model’s predictions. Giving-up densities should increase with increasing predation risk, and GUDs should increase with declining food-density-specific harvest rates. Differences in GUDs among food patches attributable to differences in quitting harvest rates measure the contribution of time allocation to managing differences in predation risk. Differences in GUDs attributable to differences in food-density-specific harvest rates measure the contribution of vigilance to managing predation risk.

Keywords: ecology of fear, foraging theory, giving-up density, habitat selection, patch use, predation risk, quitting harvest rate, time allocation, vigilance.

INTRODUCTION

Two approaches have been taken to understanding foraging under predation risk. The first considers how a forager should allocate its time among activities that vary in feeding opportunities and predation risk. The second considers how a forager should use vigilance to trade-off feeding rates and predation risk while engaged in a particular activity. Lima and Dill (1990) characterize the safety of a feeding activity as the probability of surviving predation. This probability has two components. The first represents the rate of encounters

*e-mail: squirrel@uic.edu

© 1999 Joel S. Brown
Evolutionary Ecology Research is delighted that you wish to consult one of its articles.

You may if your library or laboratory subscribes.

Ask your librarian or library committee why your place does not already subscribe to the low-cost journal that is publishing splendid science in a socially responsible manner. EER's low prices have helped librarians to rein in the indefensible cost increases that have reduced our access to science all over the world! Just ask our partners at SPARC — the Scholarly Publishing & Academic Resources Coalition of the Association of Research Libraries.

Or maybe you should just remind the folks who order your journals to contact us and subscribe! You need — and they should support — the journal that:

- Invented the instant publication of reviewed, revised and accepted e-editions.
- Vests the copyrights of all articles in their authors while preserving the rights of educational and research groups to use its material in classes, seminars, etc. at no additional cost.
- Maintains a unified data-base of articles, thus doing away with your need to worry about issue numbers, author order, and other such impediments to easy access.
- Provides Webglimpse so that you can search any word, place, species, variable, phrase or author in any article EER has ever published.
- Pioneered e-only subscriptions while maintaining, at the same time, a traditional print edition, too.

Some 10,000 readers per week have it right. EER is the place to go for great science, responsible publication policies and easy access!

Click here for the Table of Contents of the most recent issue of Evolutionary Ecology Research

Click here for full access to a sample issue of Evolutionary Ecology Research

Click here for SUBSCRIPTION INFORMATION